Activity 9.4.1.
Prove the four statements in Proposition 9.3.8. You can work entirey with vector in \(\RR^3\text{.}\)
Solution.
Each of the linearity properties involves expanding the vector field in components and using the linearity of single-variable derivatives in the components. I’ll just show the divergence identity as an example. I expand the components and then apply the divergence operator. I use the rules for vector addition and scalar multiplication.
\begin{align*}
\nabla \cdot (aF \pm bG) \amp = \nabla \cdot \left( a
(F_1, F_2, F_3) \pm b (G_1, G_2, G_3) \right)\\
\amp = \nabla \cdot \left( (aF_1,aF_2,aF_3) \pm
(bG_1,bG_2,bG_3) \right) \\
\amp = \nabla \cdot \left( aF_1 \pm bG_1,aF_2 \pm
bG_2,aF_3 \pm bG_3 \right) \\
\amp = \frac{\del}{\del x} (aF_1 \pm bG_1) +
\frac{\del}{\del y} (aF_2 \pm bG_2) + \frac{\del}{\del z}
(aF_3 \pm bG_2)
\end{align*}
I use the linearity of the single variable derivatives.
\begin{equation*}
= a \frac{\del}{\del x} F_1 \pm b \frac{\del}{\del x} G_1 +
= a \frac{\del}{\del y} F_2 \pm b \frac{\del}{\del y} G_2 +
= a \frac{\del}{\del z} F_3 \pm b \frac{\del}{\del z} G_3 a
\end{equation*}
Then I reoder the terms.
\begin{align*}
\amp= a \left( \frac{\del}{\del x} F_1 + \frac{\del}{\del
y} F_2 + \frac{\del}{\del z} F_3 \right) \pm b \left(
\frac{\del}{\del x} G_1 + \frac{\del}{\del y} G_2 +
\frac{\del}{\del z} G_3 \right) \\
\amp = a \nabla \cdot F \pm b \nabla \cdot G
\end{align*}
The other three solutions follow this pattern almost exactly, just with different use of the specific rules for vector algebra. The calculations for the cross product are a bit lengthy, but no more conceptually challenging than this.