Let \(r\) and \(h\) be two positive scalars. Consider the helix \(\gamma(t) = (r\cos t, r\sin t, ht)\text{.}\) In the helix, \(r\) is the radius of the circular movement of the helix, and \(h\) is the rate of linear movement along the axis of the helix. Iβll calculate all the information about the motion along the helix: the speed (\(v\)), curvature (\(\kappa\)), torsion (\(\tau\)),the tangent, the normal and finally the binormal.
\begin{align*}
\gamma^\prime(t) \amp = (-r \sin t, r \cos t, h)\\
v = |\gamma^\prime(t)| \amp = \sqrt{r^2 \sin^2 t + r^2
\cos^2 t + h^2} = \sqrt{r^2 + h^2}\\
T(t) \amp = \frac{\gamma^\prime(t)}{|\gamma^\prime(t)|}
= \frac{1}{\sqrt{r^2+h^2}} (-r \sin t, r \cos t, h)\\
T^\prime(t) \amp = \frac{1}{\sqrt{r^2 + h^2}} ( -r \cos
t, -r \sin t, 0)\\
|T^\prime(t)| \amp = \frac{1}{\sqrt{r^2 + h^2}}
\sqrt{r^2 \cos^2 t + r^2 \sin^2 t} = \frac{r}{\sqrt{r^2
+ h^2}}\\
\kappa(t) \amp =
\frac{|T^\prime(t)|}{|\gamma^\prime(t)|} =
\frac{\frac{r}{\sqrt{r^2 + h^2}}}{\sqrt{r^2 + h^2}} =
\frac{r}{r^2 + h^2}\\
N(t) \amp = \frac{ T^\prime(t)}{|T^\prime(t)|} =
\frac{1}{\sqrt{r^2+h^2}}{r}{\sqrt{r^2 + h^2}} (-r\cos t,
-r \sin t, 0)\\
\amp = \frac{1}{r} (-r \cos t, -r \sin t, 0) = (-\cos
t, -\sin t, 0)\\
B(t) \amp = T(t) \times N(t) = \frac{1}{\sqrt{r^2 +
h^2}} (-r \sin t, r \cos t, h) \times (-\cos t, - \sin
t, 0)\\
\amp = \frac{1}{\sqrt{r^2 + h^2}} (h \sin t, -h \cos t,
r)\\
B^\prime(t) \amp = \frac{1}{\sqrt{r^2 + h^2}} (h \cos
t, h \sin t, 0)\\
\tau(t) \amp = - \frac{B^\prime(t)}{|\gamma^\prime(t)|}
\cdot N(t) \\
\amp = \frac{1}{r^2 + h^2} (h \cos t, h \sin t , 0
) \cdot (-\cos t, - \sin t, 0) = \frac{h}{r^2 + h^2}
\end{align*}
Look at the three scalars.
\begin{align*}
v \amp = \sqrt{r^2 + h^2} \\
\kappa \amp = \frac{r}{r^2 + h^2} \\
\tau \amp = \frac{h}{r^2 + h^2}
\end{align*}
All three, speed, curvature and torsion, are constant here. This helix has constant motion, curvature and torsion