I follow the lengthy process of calculating speed, curvature, torsion, the tangent vector, the normal vector, and the binormal vector.
\begin{align*}
\gamma(t) \amp = (t^3, 1 - t^2, 1 + t^2) \\
\gamma^\prime(t) \amp = (x^\prime(t), y^\prime(t),
z^\prime(t)) = (3t^2, -2t, 2t) \\
v(t) \amp = |\gamma^\prime(t)| = \sqrt{x^\prime(t)^2 +
y^\prime(t)^2 + z^\prime(t)^2 }\\
\amp = \sqrt{ 9t^4 + 4t^2 + 4t^2} = t \sqrt{9t^2 + 4} \\
T(t) \amp = \frac{\gamma^\prime(t)}{|\gamma^\prime(t)|} =
\frac{1}{t\sqrt{9t^2 + 4}} \left( 3t^2, -2t, 2t \right)\\
\amp = \left( \frac{3t}{\sqrt{9t^2+4}}
\frac{-2}{\sqrt{9t^2+4}} \frac{2}{\sqrt{9t^2+4}} \right)\\
T^\prime(t) \amp = \left( \frac{12}{(9t^2 +
4)^{\frac{3}{2}}}, \frac{-18t}{(9t^2+4)^{\frac{3}{2}}},
\frac{18t}{(9t^2+4)^{\frac{3}{2}}} \right) \\
\amp = \frac{1}{(9t^2+4)^{\frac{3}{2}}} (12, -18t, 18t)\\
|T^\prime(t)| \amp = \frac{1}{(9t^2+4)^{\frac{3}{2}}}
\sqrt{144 + 324t^2 + 324t^2} =
\frac{1}{(9t^2+4)^{\frac{3}{2}}} \sqrt{144 + 648t^2}\\
\kappa(t) \amp =
\frac{|T^\prime(t)|}{|\gamma^\prime(t)|} =
\frac{\frac{1}{(9t^2+4)^{\frac{3}{2}}} \sqrt{ 144 +
648t^2}}{\sqrt{ 9t^4 + 4t^2}} = \frac{144 + 648
t^2}{(9t^2+4)^2}\\
N(t) \amp = \frac{T^\prime(t)}{|T^\prime(t)|}
\frac{1}{\sqrt{144 + 648t^2}} \left( 12, -18t, 18t
\right) \\
B(t) \amp = T(t) \times N(t) = \frac{1}{\sqrt{9t^2+4}}
(3t, -2, -2) \times \frac{1}{\sqrt{144+684t^2}} (12,
-18t, 18t)\\
\amp = \frac{1}{\sqrt{(9t^2+4)(144+648t^2)}} \left[
(3t, -2, -2) \times (12, -18t, 18t) \right] \\
\amp = \frac{1}{\sqrt{5832t^4 + 3888t^2 + 576}} (-72t,
-24 - 54t^2, 24 - 54t^2)\\
B^\prime(t) \amp = \frac{1}{(81t^4 +54t^2 +
8)^{\frac{3}{2}}} \left( 6\sqrt{2} (81t^4 - 8),
9\sqrt{2} t(9t^2 + 4), -9\sqrt{2}t (63t^2 + 20) \right) \\
\tau(t) \amp = - \frac{B^\prime(t)}{|\gamma^\prime(t)|}
\cdot N(t)\\
\amp = \frac{-\left( 12(6\sqrt{2}) (81t^4 - 8) -
18t(9\sqrt{2})(9t^2 + 4) - 18t(9\sqrt{2})(63t^2 + 20)
\right)}{t\sqrt{(9t^2+4)(81t^4 + 54t^2 + 8)^3}}\\
\amp = \frac{-\sqrt{2}}{t\sqrt{(9t^2+4)(81t^4 + 54t^2 +
8)^3}} (5832t^4 - 11664t^2 - 4464)
\end{align*}
As I warned you, this got pretty intense. However, I can simplify and gain useful information by just looking at the asymptotic order of the three scalars.
\begin{align*}
v \amp \cong t^2 \\
\kappa \amp \cong \frac{1}{t^2} \\
\tau \amp \cong \frac{t^4}{t^9} = \frac{1}{t^5}
\end{align*}
The speed is increasing. This makes sense, since the components are cubic and quadratic. The curve covers more distance as the inputs to these polynomials become large. The curvature starts out significant, incidating a curving shape at the start. However, asymptotically, the curvature drops to zero, making this approach a straight line. Something similar is true for torsion. Torsion is large when \(t\) is small, showing the twisting of the curve near the origin. Asymptotically, torsion decays very quickly, so the twisting quickly become insignificant as the curve straightens out.