Activity 10.3.1.
Calculate the line integral of \(F = (x^2 + y^2, 4xy) \) over the parametric curve \(\gamma = (t^2, 1-t) \) for \(t \in [0,2]\text{.}\)
Solution.
I need to evalute the field along the curve, by replacing the variables defining the field with the matching components of the curve.
\begin{align*}
F(\gamma(t)) \amp = ((t^2)^2 + (1-t)^2, 4t^2(1-t)) = (t^4
+ t^2 - 2t + 1, -4t^3 + 4t^2)
\end{align*}
Next I need to calculate the tangent of the curve.
\begin{align*}
\gamma^\prime(t) \amp = (2t, -1)
\end{align*}
Then I need the dot product of the two previous calculations.
\begin{align*}
F(\gamma(t)) \cdot \gamma^\prime(t) \amp =
2t(t^4+t^2-2t+1) - (-4t^3+4t^2) \\
\amp = 2t^4 + 2t^3 - 4t^2 + 2t + 4t^3 - 4t^2 \\
\amp = 2t^5 + 6t^3 - 8t^2 + 2t
\end{align*}
Finally, I do the line integral by integrating this dot product over the parameter domain.
\begin{align*}
\int_0^{2} F(\gamma(t)) \cdot \gamma^\prime(t) dt \amp =
\int_0^2 2t^5 + 6t^3 - 8t^2 + 2t dt \\
\amp = \left( \frac{2t^6}{6} + \frac{6t^4}{4} -
\frac{8t^3}{3} + t^2 \right) \Bigg|_0^2 .\\
\amp = \frac{64}{3} + 24 - \frac{64}{3} + 4 = 28
\end{align*}