Activity 1.4.1.
For the vectors \(u = (4,5)\) and \(v = (-1, -3)\text{,}\) calculate the operations. Draw the first three.
- \begin{equation*} u + v \end{equation*}
- \begin{equation*} u - v \end{equation*}
- \begin{equation*} \frac{1}{4} u - \frac{3}{5} v \end{equation*}
- \begin{equation*} |u| \end{equation*}
- \begin{equation*} |u - v| \end{equation*}
- \begin{equation*} u \cdot v \end{equation*}
- The angle between \(u\) and \(v\text{.}\)
Solution.
- \begin{equation*} u + v = (4 + (-1)1, 5 + (-3)) = (3,2) \end{equation*}
- \begin{equation*} u - v = (4 - (-1), 5 - (-3)) = (5, 8) \end{equation*}
- \begin{equation*} \frac{1}{4} u - \frac{3}{5} v = \left(1, \frac{5}{4} \right) - \left( \frac{-3}{5}, \frac{-9}{5} \right) = \left( \frac{8}{5}, \frac{61}{20} \right) \end{equation*}
- \begin{equation*} |u| = \sqrt{4^2 + 5^2} = \sqrt{41} \end{equation*}
- \begin{equation*} |u - v| \sqrt{5^2 + 8^2} = \sqrt{89} \end{equation*}
- \begin{equation*} u \cdot v = (4)(-1) + (5)(-3) = -19 \end{equation*}
- The angle between \(u\) and \(v\text{.}\)\begin{equation*} \cos \theta = \frac{u \cdot v}{|u||v|} = \frac{-19}{\sqrt{41}\sqrt{13}}\text{.} \end{equation*}Inverse cosine gives \(\theta \doteq 2.54\text{.}\)
Here is the diagram of the first three calculations.