Consider \(f(x,y) = \frac{1}{1 + x^2 + y^2}\text{.}\)
\begin{align*}
\frac{\del f}{\del x} \amp = \frac{-2x}{(1+x^2+y^2)^2}\\
\frac{\del f}{\del y} \amp = \frac{-2y}{(1+x^2+y^2)^2}
\end{align*}
At the point \((x,y) = (1,1)\text{,}\) the partial derivative values are \(f_x(1,1) = \frac{-2}{9}\) and \(f_y(1,1) =
\frac{-2}{9}\text{.}\) The normal is \(\left( \frac{2}{9},
\frac{2}{9}, 1 \right)\) and the point is \(\left(1,1,
\frac{1}{3} \right)\text{.}\) The tangent plane is
\begin{gather*}
\frac{-2}{9} (x-1) + \frac{-2}{9} (y-1) = z - \frac{1}{3} \\
\frac{2}{9} x + \frac{2}{9} y + z = \frac{7}{9}\text{.}
\end{gather*}
At the point \((x,y) = (0,0)\text{,}\) the partial derivative values are \(f_x(0,0) = 0\) and \(f_y(0,0) =
0\text{.}\) The normal is \((0,0,1)\) and the point is \((0,0,1)\text{.}\) The tangent plane is
\begin{equation*}
z=1\text{.}
\end{equation*}
At the point \((x,y) = (-2,2)\text{,}\) the partial derivative values are \(f_x(-2,2) = \frac{4}{81}\) and \(f_y(-2,2) = \frac{-4}{81}\text{.}\) The normal is \(\left(
\frac{4}{81}, \frac{-4}{81}, 1 \right)\) and the point is \(\left(-2,2, \frac{1}{9} \right)\text{.}\) The tangent plane is
\begin{equation*}
\frac{-4}{81} x + \frac{4}{81} y + z = \frac{1}{9}\text{.}
\end{equation*}