\begin{equation*}
\lim_{(x,y) \rightarrow (4,1)} \frac{ xy - 4y^2}{\sqrt{x}
- 2\sqrt{y}} = \lim_{(x,y) \rightarrow (4,1)}
\frac{(xy - 4y^2)(\sqrt{x} + 2\sqrt{y})}{(\sqrt{x} - 2
\sqrt{y})(\sqrt{x} + 2 \sqrt{y})}
\end{equation*}
This is another limit that cannot be directly evaluated, since it has type \(\frac{0}{0}\text{.}\) To deal with this denominator, I will multiply by its conjugate (in both numerator and denominator, of course). The conjugate gets rid of the square roots in the denominator
\begin{equation*}
= \lim_{(x,y) \rightarrow (4,1)}
\frac{(xy - 4y^2)(\sqrt{x} + 2\sqrt{y})}{x - 4y}
\end{equation*}
Then I can factor a \(y\) out of the numerator and find a common term, \((x-4y)\text{,}\) which I can cancel off.
\begin{equation*}
= \lim_{(x,y) \rightarrow (4,1)} \frac{y(x - 4y)(\sqrt{x}
+ 2\sqrt{y})}{x - 4y} = \lim_{(x,y) \rightarrow (4,1)}
y(\sqrt{x} + 2\sqrt{y})
\end{equation*}
At the end, having removed the division by zero, I just evaluate the limit.
\begin{equation*}
= \lim_{(x,y) \rightarrow (4,1)} y(\sqrt{x} + 2\sqrt{y}) =
(1)(\sqrt{4} + 2 \sqrt{1}) = 2 + 2 = 4
\end{equation*}