I’ll return to the function in Example
Example 4.3.2,
\(f(x,y) = \frac{1}{1 + x^2
+ y^2}\text{.}\)
\begin{equation*}
M = \left( \begin{matrix} \frac{-2x}{(1+x^2+y^2)^2} \amp
\frac{-2y}{(1+x^2+y^2)^2} \end{matrix} \right)
\end{equation*}
Look at the point \((0,0)\text{.}\)
\begin{equation*}
f(x,y) \approx f(0,0) + \left( \begin{matrix} 0 \amp 0
\end{matrix} \right) \begin{pmatrix}x\\y\end{pmatrix} = 1
\end{equation*}
This linear approximation is a constant \(1\text{,}\) which makes sense at the top of the small hill. Momentarily, at the peak, nothing is changing and the function doesn’t do anything. The linear approximation to doing nothing is appropriately a constant.
Look at the point \((1,1)\text{.}\)
\begin{equation*}
f(x,y) \approx f(1,1) + \left( \begin{matrix} \frac{-2}{9}
\amp \frac{-2}{9} \end{matrix} \right)
\begin{pmatrix}x-1\\y-1\end{pmatrix} = \frac{1}{3} -
\frac{2(x-1)}{9} - \frac{2(y-1)}{9}
\end{equation*}
Look at the point \((-2,2)\text{.}\)
\begin{equation*}
f(x,y) \approx f(-2,2) + \left( \begin{matrix}
\frac{4}{81} \amp \frac{-4}{81} \end{matrix} \right)
\begin{pmatrix}x+2\\y-2\end{pmatrix} = \frac{1}{9} +
\frac{4(x+2)}{81} - \frac{4(y-2)}{81}
\end{equation*}