Activity 5.2.1.
Calculate and classify the extrema of the function
\begin{equation*}
f(x,y) = \sqrt{xy + 1}
\end{equation*}
Solution.
First I calculate the gradient.
\begin{align*}
\nabla f(x,y) \amp = \left( \frac{y}{2\sqrt{xy+1}},
\frac{x}{2\sqrt{xy+1}} \right)
\end{align*}
Then I set the gradient equal to zero to find the critical points. This involves solving a system of two equations.
\begin{align*}
\frac{y}{2\sqrt{xy+1}} \amp = 0 \\
\frac{x}{2\sqrt{xy+1}} \amp = 0
\end{align*}
This is an easy system to solve. The fractions are zero only when their numerators are zero, so the only possibilities here are \(x=0\) and \(y=0\text{.}\) This gives the critical point \((0,0)\text{.}\) Then I calculate the determinant of the Hessian and evaluate it at the critical point.
\begin{align*}
D \amp = \frac{\del^2 f}{\del x^2} \frac{\del^2 f}{\del y^2}
- \left( \frac{\del^2 f}{\del x \del y} \right)^2 \\
D \amp = \left( \frac{-y^2}{4(xy+1)^{\frac{3}{2}}}
\right) \left( \frac{-x^2}{4(xy+1)^{\frac{3}{2}}}
\right) - \left( \frac{xy+2}{4(xy+1)^{\frac{3}{2}}}
\right)^2 \\
D(0,0) \amp = 0 - \left( \frac{2}{4} \right)^2 =
\frac{1}{4}
\end{align*}
The Hessian determinant is negative, so the critical point at \((0,0)\) is a saddle point.