Consider the function \(f(x,y) = x + y\) on the arc in the first quadrant between radii \(2\) and \(4\text{.}\) I set up the integral over the arc with \(r \in [2,4]\) and \(\theta \in \left[ 0, \frac{\pi}{2} \right]\text{.}\) Then I proceed to setup an calculate the iterated integral. Note that I must remember to include the Jacobian \(r\) in \(r
dr d \theta\) in the setup of the integral.
\begin{align*}
\int_D x + y dA \amp = \int_0^{\pi/2} \int_2^4 r (\cos
\theta + \sin \theta) r dr d\theta\\
\amp = \int_0^{\pi/2} \left. \frac{r^3}{r} (\cos \theta +
\sin \theta) \right|_2^4 d\theta\\
\amp = \frac{56}{3} \int_0^{\pi/2} (\cos \theta + \sin
\theta) d \theta\\
\amp = \left. \frac{56}{3} (\sin \theta - \cos \theta)
\right|_0^{\pi/2}\\
\amp = \frac{56}{3} (1 - 0 - 0 + 1) = \frac{112}{3}
\end{align*}