Skip to main content
Course Notes for Multivariable Calculus
Remkes Kooistra
x
Search Results:
No results.
☰
Contents
You!
Choose avatar
▻
✔️
You!
😺
👤
👽
🐶
🐼
🌈
Font family
▻
✔️
Open Sans
AaBbCc 123 PreTeXt
Roboto Serif
AaBbCc 123 PreTeXt
Adjust font
▻
Size
12
Smaller
Larger
Width
100
narrower
wider
Weight
400
thinner
heavier
Letter spacing
0
/200
closer
f a r t h e r
Word spacing
0
/50
smaller gap
larger gap
Line Spacing
135
/100
closer
together
further
apart
Light/dark mode
▻
✔️
default
pastel
twilight
dark
midnight
Reading ruler
▻
✔️
none
underline
L-underline
grey bar
light box
sunrise
sunrise underline
Motion by:
✔️
follow the mouse
up/down arrows - not yet
eye tracking - not yet
<
Prev
^
Up
Next
>
🔍
\(\def\vs{{\it vs. }} \def\cf{{\it cf. }} \def\viz{{\it viz. }} \def\ie{{\it i.e. }} \def\etc{{\it etc. }} \def\eg{{\it e.g. }} \def\etal{{\it et al .}} \def\via{{\it via }} \def\adhoc{{\it ad hoc }} \def\apriori{{\it apriori }} \def\Afrak{\mathfrak{A}} \def\Bfrak{\mathfrak{B}} \def\Cfrak{\mathfrak{C}} \def\Dfrak{\mathfrak{D}} \def\Efrak{\mathfrak{E}} \def\Ffrak{\mathfrak{F}} \def\Gfrak{\mathfrak{G}} \def\Hfrak{\mathfrak{H}} \def\Ifrak{\mathfrak{I}} \def\Jfrak{\mathfrak{J}} \def\Kfrak{\mathfrak{K}} \def\Lfrak{\mathfrak{L}} \def\Mfrak{\mathfrak{M}} \def\Nfrak{\mathfrak{N}} \def\Ofrak{\mathfrak{O}} \def\Pfrak{\mathfrak{P}} \def\Qfrak{\mathfrak{Q}} \def\Rfrak{\mathfrak{R}} \def\Sfrak{\mathfrak{S}} \def\Tfrak{\mathfrak{T}} \def\Ufrak{\mathfrak{U}} \def\Vfrak{\mathfrak{V}} \def\Wfrak{\mathfrak{W}} \def\Xfrak{\mathfrak{X}} \def\Yfrak{\mathfrak{Y}} \def\Zfrak{\mathfrak{Z}} \def\afrak{\mathfrak{a}} \def\bfrak{\mathfrak{b}} \def\cfrak{\mathfrak{c}} \def\dfrak{\mathfrak{d}} \def\efrak{\mathfrak{e}} \def\ffrak{\mathfrak{f}} \def\gfrak{\mathfrak{g}} \def\hfrak{\mathfrak{h}} \def\ifrak{\mathfrak{i}} \def\jfrak{\mathfrak{j}} \def\kfrak{\mathfrak{k}} \def\lfrak{\mathfrak{l}} \def\mfrak{\mathfrak{m}} \def\nfrak{\mathfrak{n}} \def\ofrak{\mathfrak{o}} \def\pfrak{\mathfrak{p}} \def\qfrak{\mathfrak{q}} \def\rfrak{\mathfrak{r}} \def\sfrak{\mathfrak{s}} \def\tfrak{\mathfrak{t}} \def\ufrak{\mathfrak{u}} \def\vfrak{\mathfrak{v}} \def\wfrak{\mathfrak{w}} \def\xfrak{\mathfrak{x}} \def\yfrak{\mathfrak{y}} \def\zfrak{\mathfrak{z}} \def\AA{\mathbb{A}} \def\BB{\mathbb{B}} \def\CC{\mathbb{C}} \def\DD{\mathbb{D}} \def\EE{\mathbb{E}} \def\FF{\mathbb{F}} \def\GG{\mathbb{G}} \def\HH{\mathbb{H}} \def\II{\mathbb{I}} \def\JJ{\mathbb{J}} \def\KK{\mathbb{K}} \def\LL{\mathbb{L}} \def\MM{\mathbb{M}} \def\NN{\mathbb{N}} \def\OO{\mathbb{O}} \def\PP{\mathbb{P}} \def\QQ{\mathbb{Q}} \def\RR{\mathbb{R}} \def\SS{\mathbb{S}} \def\TT{\mathbb{T}} \def\UU{\mathbb{U}} \def\VV{\mathbb{V}} \def\WW{\mathbb{W}} \def\XX{\mathbb{X}} \def\YY{\mathbb{Y}} \def\ZZ{\mathbb{Z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\Ap{A^\prime} \def\Bp{B^\prime} \def\Cp{C^\prime} \def\Dp{D^\prime} \def\Ep{E^\prime} \def\Fp{F^\prime} \def\Gp{G^\prime} \def\Hp{H^\prime} \def\Ip{I^\prime} \def\Jp{J^\prime} \def\Kp{K^\prime} \def\Lp{L^\prime} \def\Mp{M^\prime} \def\Mp{N^\prime} \def\Op{O^\prime} \def\Pp{P^\prime} \def\Qp{Q^\prime} \def\Rp{R^\prime} \def\Sp{S^\prime} \def\Tp{T^\prime} \def\Up{U^\prime} \def\Vp{V^\prime} \def\Wp{W^\prime} \def\Xp{X^\prime} \def\Yp{Y^\prime} \def\Zp{Z^\prime} \def\ap{a^\prime} \def\bp{b^\prime} \def\cp{c^\prime} \def\dprime{d^\prime} \def\ep{e^\prime} \def\fp{f^\prime} \def\gp{g^\prime} \def\hp{h^\prime} \def\ip{i^\prime} \def\jp{j^\prime} \def\kp{k^\prime} \def\lp{l^\prime} \def\mp{m^\prime} \def\np{n^\prime} \def\op{o^\prime} \def\pp{p^\prime} \def\qp{q^\prime} \def\rp{r^\prime} \def\sp{s^\prime} \def\tp{t^\prime} \def\up{u^\prime} \def\vp{v^\prime} \def\wp{w^\prime} \def\xp{x^\prime} \def\yp{y^\prime} \def\zp{z^\prime} \def\App{A^{\prime\prime}} \def\Bpp{B^{\prime\prime}} \def\Cpp{C^{\prime\prime}} \def\Dpp{D^{\prime\prime}} \def\Epp{E^{\prime\prime}} \def\Fpp{F^{\prime\prime}} \def\Gpp{G^{\prime\prime}} \def\Hpp{H^{\prime\prime}} \def\Ipp{I^{\prime\prime}} \def\Jpp{J^{\prime\prime}} \def\Kpp{K^{\prime\prime}} \def\Lpp{L^{\prime\prime}} \def\Mpp{M^{\prime\prime}} \def\Mpp{N^{\prime\prime}} \def\Opp{O^{\prime\prime}} \def\Ppp{P^{\prime\prime}} \def\Qpp{Q^{\prime\prime}} \def\Rpp{R^{\prime\prime}} \def\Spp{S^{\prime\prime}} \def\Tpp{T^{\prime\prime}} \def\Upp{U^{\prime\prime}} \def\Vpp{V^{\prime\prime}} \def\Wpp{W^{\prime\prime}} \def\Xpp{X^{\prime\prime}} \def\Ypp{Y^{\prime\prime}} \def\Zpp{Z^{\prime\prime}} \def\app{a^{\prime\prime}} \def\bpp{b^{\prime\prime}} \def\cpp{c^{\prime\prime}} \def\dpp{d^{\prime\prime}} \def\epp{e^{\prime\prime}} \def\fpp{f^{\prime\prime}} \def\gpp{g^{\prime\prime}} \def\hpp{h^{\prime\prime}} \def\ipp{i^{\prime\prime}} \def\jpp{j^{\prime\prime}} \def\kpp{k^{\prime\prime}} \def\lpp{l^{\prime\prime}} \def\mpp{m^{\prime\prime}} \def\npp{n^{\prime\prime}} \def\opp{o^{\prime\prime}} \def\ppp{p^{\prime\prime}} \def\qpp{q^{\prime\prime}} \def\rpp{r^{\prime\prime}} \def\spp{s^{\prime\prime}} \def\tpp{t^{\prime\prime}} \def\upp{u^{\prime\prime}} \def\vpp{v^{\prime\prime}} \def\wpp{w^{\prime\prime}} \def\xpp{x^{\prime\prime}} \def\ypp{y^{\prime\prime}} \def\zpp{z^{\prime\prime}} \def\abar{\overline{a}} \def\bbar{\overline{b}} \def\cbar{\overline{c}} \def\dbar{\overline{d}} \def\ebar{\overline{e}} \def\fbar{\overline{f}} \def\gbar{\overline{g}} \def\ibar{\overline{i}} \def\jbar{\overline{j}} \def\kbar{\overline{k}} \def\lbar{\overline{l}} \def\mbar{\overline{m}} \def\nbar{\overline{n}} \def\obar{\overline{o}} \def\pbar{\overline{p}} \def\qbar{\overline{q}} \def\rbar{\overline{r}} \def\sbar{\overline{s}} \def\tbar{\overline{t}} \def\ubar{\overline{u}} \def\vbar{\overline{v}} \def\wbar{\overline{w}} \def\xbar{\overline{x}} \def\ybar{\overline{y}} \def\zbar{\overline{z}} \def\Abar{\overline{A}} \def\Bbar{\overline{B}} \def\Cbar{\overline{C}} \def\Dbar{\overline{D}} \def\Ebar{\overline{E}} \def\Fbar{\overline{F}} \def\Gbar{\overline{G}} \def\Hbar{\overline{H}} \def\Ibar{\overline{I}} \def\Jbar{\overline{J}} \def\Kbar{\overline{K}} \def\Lbar{\overline{L}} \def\Mbar{\overline{M}} \def\Nbar{\overline{N}} \def\Obar{\overline{O}} \def\Pbar{\overline{P}} \def\Qbar{\overline{Q}} \def\Rbar{\overline{R}} \def\Sbar{\overline{S}} \def\Tbar{\overline{T}} \def\Ubar{\overline{U}} \def\Vbar{\overline{V}} \def\Wbar{\overline{W}} \def\Xbar{\overline{X}} \def\Ybar{\overline{Y}} \def\Zbar{\overline{Z}} \def\aunder{\underline{a}} \def\bunder{\underline{b}} \def\cunder{\underline{c}} \def\dunder{\underline{d}} \def\eunder{\underline{e}} \def\funder{\underline{f}} \def\gunder{\underline{g}} \def\hunder{\underline{h}} \def\iunder{\underline{i}} \def\junder{\underline{j}} \def\kunder{\underline{k}} \def\lunder{\underline{l}} \def\munder{\underline{m}} \def\nunder{\underline{n}} \def\ounder{\underline{o}} \def\punder{\underline{p}} \def\qunder{\underline{q}} \def\runder{\underline{r}} \def\sunder{\underline{s}} \def\tunder{\underline{t}} \def\uunder{\underline{u}} \def\vunder{\underline{v}} \def\wunder{\underline{w}} \def\xunder{\underline{x}} \def\yunder{\underline{y}} \def\zunder{\underline{z}} \def\Aunder{\underline{A}} \def\atilde{\widetilde{a}} \def\btilde{\widetilde{b}} \def\ctilde{\widetilde{c}} \def\dtilde{\widetilde{d}} \def\etilde{\widetilde{e}} \def\ftilde{\widetilde{f}} \def\gtilde{\widetilde{g}} \def\htilde{\widetilde{h}} \def\itilde{\widetilde{i}} \def\jtilde{\widetilde{j}} \def\ktilde{\widetilde{k}} \def\ltilde{\widetilde{l}} \def\mtilde{\widetilde{m}} \def\ntilde{\widetilde{n}} \def\otilde{\widetilde{o}} \def\ptilde{\widetilde{p}} \def\qtilde{\widetilde{q}} \def\rtilde{\widetilde{r}} \def\stilde{\widetilde{s}} \def\ttilde{\widetilde{t}} \def\utilde{\widetilde{u}} \def\vtilde{\widetilde{v}} \def\wtilde{\widetilde{w}} \def\xtilde{\widetilde{x}} \def\ytilde{\widetilde{y}} \def\ztilde{\widetilde{z}} \def\Atilde{\widetilde{A}} \def\Btilde{\widetilde{B}} \def\Ctilde{\widetilde{C}} \def\Dtilde{\widetilde{D}} \def\Etilde{\widetilde{E}} \def\Ftilde{\widetilde{F}} \def\Gtilde{\widetilde{G}} \def\Htilde{\widetilde{H}} \def\Itilde{\widetilde{I}} \def\Jtilde{\widetilde{J}} \def\Ktilde{\widetilde{K}} \def\Ltilde{\widetilde{L}} \def\Mtilde{\widetilde{M}} \def\Ntilde{\widetilde{N}} \def\Otilde{\widetilde{O}} \def\Ptilde{\widetilde{P}} \def\Qtilde{\widetilde{Q}} \def\Rtilde{\widetilde{R}} \def\Stilde{\widetilde{S}} \def\Ttilde{\widetilde{T}} \def\Utilde{\widetilde{U}} \def\Vtilde{\widetilde{V}} \def\Wtilde{\widetilde{W}} \def\Xtilde{\widetilde{X}} \def\Ytilde{\widetilde{Y}} \def\Ztilde{\widetilde{Z}} \def\Alphatilde{\widetilde{\Alpha}} \def\Betatilde{\widetilde{\Beta}} \def\Gammatilde{\widetilde{\Gamma}} \def\Deltatilde{\widetilde{\Delta}} \def\Epsilontilde{\widetilde{\Epsilon}} \def\Zetatilde{\widetilde{\Zeta}} \def\Etatilde{\widetilde{\Eta}} \def\Thetatilde{\widetilde{\Theta}} \def\Iotatilde{\widetilde{\Iota}} \def\Kappatilde{\widetilde{\Kappa}} \def\Lambdatilde{\widetilde{\Lamdba}} \def\Mutilde{\widetilde{\Mu}} \def\Nutilde{\widetilde{\Nu}} \def\Xitilde{\widetilde{\Xi}} \def\Omicrontilde{\widetilde{\Omicron}} \def\Pitilde{\widetilde{\Pi}} \def\Rhotilde{\widetilde{\Rho}} \def\Sigmatilde{\widetilde{\Sigma}} \def\Tautilde{\widetilde{\Tau}} \def\Upsilontilde{\widetilde{\Upsilon}} \def\Phitilde{\widetilde{\Phi}} \def\Chitilde{\widetilde{\Chi}} \def\Psitilde{\widetilde{\Psi}} \def\Omegatilde{\widetilde{\Omega}} \def\alphatilde{\widetilde{\alpha}} \def\betatilde{\widetilde{\beta}} \def\gammatilde{\widetilde{\gamma}} \def\deltatilde{\widetilde{\delta}} \def\epsilontilde{\widetilde{\epsilon}} \def\zetatilde{\widetilde{\zeta}} \def\etatilde{\widetilde{\eta}} \def\thetatilde{\widetilde{\theta}} \def\iotatilde{\widetilde{\iota}} \def\kappatilde{\widetilde{\kappa}} \def\lambdatilde{\widetilde{\lamdba}} \def\mutilde{\widetilde{\mu}} \def\nutilde{\widetilde{\nu}} \def\xitilde{\widetilde{\xi}} \def\omicrontilde{\widetilde{\omicron}} \def\pitilde{\widetilde{\pi}} \def\rhotilde{\widetilde{\rho}} \def\sigmatilde{\widetilde{\sigma}} \def\tautilde{\widetilde{\tau}} \def\upsilontilde{\widetilde{\upsilon}} \def\phitilde{\widetilde{\phi}} \def\chitilde{\widetilde{\chi}} \def\psitilde{\widetilde{\psi}} \def\omegatilde{\widetilde{\omega}} \def\Alphabar{\bar{\Alpha}} \def\Betabar{\bar{\Beta}} \def\Gammabar{\bar{\Gamma}} \def\Deltabar{\bar{\Delta}} \def\Epsilonbar{\bar{\Epsilon}} \def\Zetabar{\bar{\Zeta}} \def\Etabar{\bar{\Eta}} \def\Thetabar{\bar{\Theta}} \def\Iotabar{\bar{\Iota}} \def\Kappabar{\bar{\Kappa}} \def\Lambdabar{\bar{\Lamdba}} \def\Mubar{\bar{\Mu}} \def\Nubar{\bar{\Nu}} \def\Xibar{\bar{\Xi}} \def\Omicronbar{\bar{\Omicron}} \def\Pibar{\bar{\Pi}} \def\Rhobar{\bar{\Rho}} \def\Sigmabar{\bar{\Sigma}} \def\Taubar{\bar{\Tau}} \def\Upsilonbar{\bar{\Upsilon}} \def\Phibar{\bar{\Phi}} \def\Chibar{\bar{\Chi}} \def\Psibar{\bar{\Psi}} \def\Omegabar{\bar{\Omega}} \def\alphabar{\bar{\alpha}} \def\betabar{\bar{\beta}} \def\gammabar{\bar{\gamma}} \def\deltabar{\bar{\delta}} \def\epsilonbar{\bar{\epsilon}} \def\zetabar{\bar{\zeta}} \def\etabar{\bar{\eta}} \def\thetabar{\bar{\theta}} \def\iotabar{\bar{\iota}} \def\kappabar{\bar{\kappa}} \def\lambdabar{\bar{\lamdba}} \def\mubar{\bar{\mu}} \def\nubar{\bar{\nu}} \def\xibar{\bar{\xi}} \def\omicronbar{\bar{\omicron}} \def\pibar{\bar{\pi}} \def\rhobar{\bar{\rho}} \def\sigmabar{\bar{\sigma}} \def\taubar{\bar{\tau}} \def\upsilonbar{\bar{\upsilon}} \def\phibar{\bar{\phi}} \def\chibar{\bar{\chi}} \def\psibar{\bar{\psi}} \def\omegabar{\bar{\omega}} \def\del{\partial} \def\delbar{\overline{\partial}} \def\Cech{\check{C}} \def\half{\frac{1}{2}} \def\defeq{\mathrel{\mathop:}=} \def\alg{\mathrm{alg}} \def\Alt{\mathrm{Alt}} \def\Amp{\mathrm{Amp}} \def\Arg{\mathrm{Arg}} \def\an{\mathrm{an}} \def\anti{\mathrm{anti}} \def\Ap{\mathrm{Ap}} \def\arcsinh{\mathrm{arcsinh\hspace{0.07cm}}} \def\arccosh{\mathrm{arccosh\hspace{0.07cm}}} \def\arctanh{\mathrm{arctanh\hspace{0.07cm}}} \def\arccsch{\mathrm{arccsch\hspace{0.07cm}}} \def\arcsech{\mathrm{arcsech\hspace{0.07cm}}} \def\arccoth{\mathrm{arccoth\hspace{0.07cm}}} \def\arccsc{\mathrm{arccsc\hspace{0.07cm}}} \def\arcsec{\mathrm{arcsec\hspace{0.07cm}}} \def\arccot{\mathrm{arccot\hspace{0.07cm}}} \def\arg{\mathrm{arg}} \def\BC{\mathrm{BC}} \def\Bel{\mathrm{Bel}} \def\calCH{\mathcal{CH}} \def\csch{\mathrm{csch}\hspace{0.07cm}} \def\CH{\mathrm{CH}} \def\ch{\mathrm{ch}} \def\closed{\mathrm{closed}} \def\codim{\mathrm{codim}} \def\coth{\mathrm{coth}\hspace{0.07cm}} \def\Coh{\mathfrak{Coh}} \def\Coker{\mathrm{Coker}} \def\Cone{\mathrm{Cone}} \def\darg{d\mathrm{arg}} \def\Db{\mathrm{Db}} \def\dclosed{\mathrm{d-closed}} \def\deg{\mathrm{deg}} \def\dim{\mathrm{dim}} \def\divisor{\mathrm{div}} \def\dlog{d\mathrm{log}} \def\DNE{\mathrm{DNE}} \def\DR{\mathrm{DR}} \def\DST{\mathrm{DST}} \def\exp{\mathrm{exp}} \def\FLB{\mathrm{FLB}} \def\FLS{\mathrm{FLS}} \def\Gr{\mathrm{Gr}} \def\Hzar{H_{\mathrm{Zar}}} \def\Hol{\mathrm{Hol}} \def\Id{\mathrm{Id}} \def\Image{\mathrm{Im}} \def\Ka{\mathcal{K}_A} \def\Ker{\mathrm{Ker}} \def\kod{\mathrm{kod}} \def\Kx{\mathcal{K}_X} \def\Kz{\mathcal{K}_Z} \def\log{\mathrm{log}} \def\Log{\mathrm{Log}} \def\Li{\mathrm{Li}} \def\min{\mathrm{min}} \def\Mon{\mathrm{Mon}} \def\Nef{\mathrm{Nef}} \def\NS{\mathrm{NS}} \def\Oa{\mathcal{O}_A} \def\Ox{\mathcal{O}_X} \def\Oz{\mathcal{O}_Z} \def\Perp{\mathrm{Perp}} \def\Pic{\mathrm{Pic}} \def\Proj{\mathrm{Proj}} \def\rank{\mathrm{rank}} \def\Rat{\mathrm{Rat}} \def\Real{\mathrm{Re}} \def\reg{\mathrm{reg}} \def\Res{\mathrm{Res}} \def\res{\mathrm{res}} \def\Ric{\mathrm{Ric}} \def\sech{\mathrm{sech}\hspace{0.07cm}} \def\Span{\mathrm{Span}} \def\Spec{\mathrm{Spec}} \def\sing{\mathrm{sing}} \def\Singx{\mathrm{Sing}(X)} \def\sheafKer{\mathcal{\Ker}} \def\sheafIm{\mathcal{\Im}} \def\Span{\mathrm{Span}} \def\Spin{\mathrm{Spin}} \def\Str{\mathrm{Str}} \def\td{\mathrm{td}} \def\tr{\mathrm{tr}} \def\Todd{\mathrm{Todd}} \def\tor{\mathrm{tor}} \def\trdeg{\mathrm{trdeg}} \def\Zar{\mathrm{Zar}} \def\ZFLS{\mathrm{ZFLS}} \usepackage{tikz} \usepackage{tkz-graph} \usepackage{tkz-euclide} \usetikzlibrary{patterns} \usetikzlibrary{positioning} \usetikzlibrary{matrix,arrows} \usetikzlibrary{calc} \usetikzlibrary{shapes} \usetikzlibrary{through,intersections,decorations,shadows,fadings} \usepackage{pgfplots} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9} \newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}} \)
Front Matter
1
Week 1
1.1
Vectors in
\(\RR^2\)
and
\(\RR^3\)
1.1.1
Describing Space
1.1.2
Points or Directions?
1.1.3
Local Direction Vectors
1.2
Vector Operations
1.2.1
Vector Arithmetic
1.2.2
The Dot Product
1.2.3
The Cross Product
1.2.4
Angular Motion
1.3
Equations of Planes
1.3.1
Definition of a Locus
1.3.2
Dot Products and Loci
1.3.3
An Algorithm for Equations of Planes
1.4
Week 1 Activity
1.4.1
Vector Arithmetic
1.4.2
Equations of Planes and Hyperplanes
1.4.3
Conceptual Review Questions
2
Week 2
2.1
Parametric Curves
2.1.1
Definition of Parametric Cuves
2.1.2
Parametric Curves
2.1.3
Varied Parametrizations
2.1.4
Reparametrization
2.2
Calculus of Parametric Curves
2.2.1
Tangents
2.2.2
Arc Length
2.2.3
Parametrization by Arclength
2.2.4
Arclength and Tangents
2.2.5
Curvature
2.2.6
Normals
2.2.7
Torsion
2.2.8
Acceleration and Movement in Space
2.3
Week 2 Activity
2.3.1
Examples Parametric Curves
2.3.2
Reparametrization
2.3.3
Arclength
2.3.4
Parametrization by Arclength
2.3.5
Tangents to Parametric Curves
2.3.6
Full Descriptions of Curves in
\(\RR^3\)
2.3.7
Conceptual Review Questions
3
Week 3
3.1
Scalar Fields
3.1.1
Definitions
3.1.2
Geometry and Graphs of Functions
3.1.3
Contour Plots
3.2
Multivariable Limits
3.2.1
Definition of Limits of Multivariable Functions
3.2.2
Evaluating Multivariable Limits
3.3
Partial Derivatives
3.3.1
Definition
3.3.2
Differentiability
3.3.3
Higher Partial Derivatives and Clairaut’s Theorem
3.4
Gradients
3.4.1
Definition of the Gradient
3.4.2
Interpretation of the Gradient
3.4.3
Gradient Examples
3.4.4
Extensions of the Gradient
3.5
Week 3 Activity
3.5.1
Contour Plots
3.5.2
Partial Derivatives
3.5.3
Gradients
3.5.4
Conceptual Review Questions
4
Week 4
4.1
Directional Derivatives
4.1.1
Definition of Directional Derivatives
4.1.2
Calculating Directional Derivatives
4.1.3
Examples of Directional Derivatives
4.2
The Chain Rule
4.2.1
Multivariable Composition
4.2.2
The Chain Rule
4.2.3
Chain Rule Examples
4.3
Tangent Planes
4.3.1
Generalizing Tangents
4.3.2
Tangent Plane Examples
4.3.3
Higher Dimensions
4.4
Matrices and Linear Transformations
4.4.1
Linear Transformations
4.5
Linear Approximation
4.5.1
Single Variable Interpretation
4.5.2
Linear Approximation in
\(\RR^2\)
4.5.3
Examples
4.5.4
What Is A Derivative?
4.6
Week 4 Activity
4.6.1
Directional Derivatives
4.6.2
Chain Rule
4.6.3
Tangent Planes
4.6.4
Conceptual Review Questions
5
Week 5
5.1
Extrema
5.1.1
Extreme Values
5.1.2
Finding Extrema
5.1.3
Examples
5.1.4
Hessian Matrices
5.1.5
Examples
5.1.6
Global Extrema
5.2
Week 5 Activity
5.2.1
Extrema
5.2.2
Conceptual Review Questions
6
Week 6
6.1
Topology of
\(\RR^n\)
6.1.1
What Is Topology
6.1.2
Open and Closed Sets
6.1.3
Important Open and Closed Sets
6.2
The Indefinite Integral
6.3
The Definite Integral
6.3.1
The Conceptual Integral
6.3.2
The Riemann Integral
6.3.3
Integrable Functions
6.3.4
Properties of the Definite Integral
6.4
Iterated Integrals
6.4.1
Analyzing the Sums in the Riemann Integral
6.4.2
Fubini’s Theorem
6.4.3
Examples
6.5
Week 6 Activity
6.5.1
Topology
6.5.2
Iterated Integrals
6.5.3
Conceptual Review Questions
7
Week 7
7.1
Improper and Separable Integrals
7.1.1
Improper Integrals
7.1.2
Separable Integrals
7.2
Integrable Sets
7.2.1
Characteristic Functions
7.2.2
Integrable Sets
7.2.3
Integration over Integrable Sets
7.3
Integration with Variable Bounds
7.3.1
Calculations over Integrable Sets
7.3.2
Volume
7.3.3
More Examples of Integrals with Variable Bounds
7.4
Week 7 Activity
7.4.1
Activity
7.4.2
Conceptual Review Questions
8
Week 8
8.1
Change of Variables
8.2
Polar Coordinates
8.2.1
Definition of Polar Coordinates
8.2.2
Properties of Polar Coordinates
8.2.3
Common Regions of Integration in Polar Coordinates
8.2.4
8.3
Cylindrical and Spherical Coordinates
8.3.1
Curvilinear Coordinate Systems
8.3.2
Cylindrical Coordinates
8.3.3
Examples with Cylindrical Coordinates
8.3.4
Spherical Coordinates
8.4
Week 8 Activity
8.4.1
Polar Coordinates
8.4.2
Spherical and Cylindrical Coordinates
8.4.3
Conceptual Review Questions
9
Week 9
9.1
Vector Fields
9.1.1
Definition
9.1.2
Examples
9.1.3
Basic Operations on Vector Fields
9.2
Integral Curves
9.2.1
Vector Fields and Parametric Curve
9.2.2
Examples of Integral Curves
9.2.3
Calculating Integral Curves
9.3
Differential Operators on Vector Fields
9.3.1
Definitions
9.3.2
Multivariable Differential Equations
9.3.3
Interaction between Vector Operations
9.4
Week 9 Activity
9.4.1
Proofs for Differential Operators
9.4.2
Vector Field Differential Operators
9.4.3
Harmonic Scalar Fields
9.4.4
Conceptual Review Questions
10
Week 10
10.1
Conservative Vector Fields
10.2
Line Integrals of Vector Fields
10.2.1
Vectors Fields and Curves
10.2.2
Calculating Line Integrals
10.2.3
Fundamental Theorems
10.2.4
The Fundamental Theorem of Line Integrals
10.2.5
Implications for Conservative Vector Fields
10.2.6
Properties of Conversative Vector Fields
10.3
Week 10 Activity
10.3.1
Activity
10.3.2
Activity
10.3.3
Conceptual Review Questions
11
Week 11
11.1
Parametric Surfaces
11.1.1
Motivation
11.1.2
Definitions
11.1.3
Calculus of Parametric Surfaces
11.2
Flux Integrals
11.2.1
Fields and Surfaces
11.2.2
11.3
Week 11 Activity
11.3.1
Parametric Surfaces and Areas
11.3.2
Activity
11.3.3
Conceptual Review Questions
12
Week 12
12.1
Gauss, Green and Stokes
12.1.1
Boundaries and Orientation
12.1.2
Gauss-Green-Stokes
12.1.3
Direct Uses of Gauss-Green-Stokes
12.1.4
Indirect Uses of Gauss-Green-Stokes
12.1.5
Strategies for Line and Surface Integrals
12.2
Maxwell’s Equations
12.2.1
19th Century Electromagnetic Observations
12.2.2
Mathematics Formalism for Electromagnetism
12.2.3
Gauss-Green-Stokes and Maxwell’s Equations
12.2.4
Maxwell’s Equations in a Vacuum
12.3
Week 12 Activity
12.3.1
Stokes Theorem
12.3.2
Conceptual Review Questions
Backmatter
Colophon
Colophon
This book was authored in PreTeXt.