Activity 7.5.1.
Calculate the inverse of this matrix. Check by matrix multiplication that the product of the matrix and its inverse (in both orders!) is the identity.
\begin{equation*}
\left( \begin{matrix}
7 \amp 0 \\
-5 \amp -4
\end{matrix} \right)
\end{equation*}
Solution.
I write the extended matrix with the original matrix and the identity.
\begin{equation*}
\left( \begin{array}{cc|cc}
7 \amp 0 \amp 1 \amp 0 \\
-5 \amp -4 \amp 0 \amp 1 \\
\end{array} \right)
\end{equation*}
I row reduce this extended matrix.
\begin{equation*}
\left( \begin{array}{cc|cc}
1 \amp 0 \amp \frac{4}{28} \amp 0 \\
0 \amp 1 \amp \frac{-5}{28} \amp \frac{-1}{4} \\
\end{array} \right)
\end{equation*}
The left side of the extended matrix reduces to the identity, so the right side is the inverse matrix. Then I check the two products.
\begin{align*}
\frac{1}{28} \left( \begin{matrix}
4 \amp 0 \\
-5 \amp -7
\end{matrix} \right)
\left( \begin{matrix}
7 \amp 0 \\
-5 \amp -4
\end{matrix} \right) =
\left( \begin{matrix}
1 \amp 0 \\
0 \amp 1 \\
\end{matrix} \right)\\
\left( \begin{matrix}
7 \amp 0 \\
-5 \amp -4
\end{matrix} \right)
\frac{1}{28} \left( \begin{matrix}
4 \amp 0 \\
-5 \amp -7
\end{matrix} \right) =
\left( \begin{matrix}
1 \amp 0 \\
0 \amp 1 \\
\end{matrix} \right)
\end{align*}
Both products are the identity matrix, so this is the correct inverse.