I turn the system to a matrix.
\begin{equation*}
\left( \begin{array}{ccc|c}
2 \amp 1 \amp -3 \amp 1 \\
4 \amp 0 \amp 1 \amp 7 \\
-3 \amp -3 \amp 2 \amp 0
\end{array} \right)
\end{equation*}
I want to make a leading one in the first row, so I divide the first row by \(2\text{.}\)
\begin{equation*}
\left( \begin{array}{ccc|c}
1 \amp \frac{1}{2} \amp \frac{-3}{2} \amp \frac{1}{2} \\
4 \amp 0 \amp 1 \amp 7 \\
-3 \amp -3 \amp 2 \amp 0
\end{array} \right)
\end{equation*}
Then I want to clear the column under this leading one. I start by subtracting \(4\) times the first row from the second row.
\begin{equation*}
\left( \begin{array}{ccc|c}
1 \amp \frac{1}{2} \amp \frac{-3}{2} \amp \frac{1}{2} \\
0 \amp -2 \amp 7 \amp 5 \\
-3 \amp -3 \amp 2 \amp 0
\end{array} \right)
\end{equation*}
Then I add \(3\) times the first row to the third row.
\begin{equation*}
\left( \begin{array}{ccc|c}
1 \amp \frac{1}{2} \amp \frac{-3}{2} \amp \frac{1}{2} \\
0 \amp -2 \amp 7 \amp 5 \\
0 \amp \frac{-3}{2} \amp \frac{-5}{2} \amp \frac{3}{2}
\end{array} \right)
\end{equation*}
That finishes the first column. Next, I want a leading one in the second row. To get that, I divide the second row by \(-2\text{.}\)
\begin{equation*}
\left( \begin{array}{ccc|c}
1 \amp \frac{1}{2} \amp \frac{-3}{2} \amp \frac{1}{2} \\
0 \amp 1 \amp \frac{-7}{2} \amp \frac{-5}{2} \\
0 \amp \frac{-3}{2} \amp \frac{-5}{2} \amp \frac{3}{2}
\end{array} \right)
\end{equation*}
Then I want to clear the column above and below this leading one. First, I’ll subtract \(\frac{1}{2}\) times the second row from the first row.
\begin{equation*}
\left( \begin{array}{ccc|c}
1 \amp 0 \amp \frac{1}{4} \amp \frac{7}{4} \\
0 \amp 1 \amp \frac{-7}{2} \amp \frac{-5}{2} \\
0 \amp \frac{-3}{2} \amp \frac{-5}{2} \amp \frac{3}{2}
\end{array} \right)
\end{equation*}
Then I’ll add \(\frac{3}{2}\) times the second row to the third row.
\begin{equation*}
\left( \begin{array}{ccc|c}
1 \amp 0 \amp \frac{1}{4} \amp \frac{7}{4} \\
0 \amp 1 \amp \frac{-7}{2} \amp \frac{-5}{2} \\
0 \amp 0 \amp \frac{-31}{4} \amp \frac{-9}{4}
\end{array} \right)
\end{equation*}
That finishes the second column. Now I need a leading one in the third row. To get that, I’ll divide the third row by \(\frac{-31}{4}\text{.}\)
\begin{equation*}
\left( \begin{array}{ccc|c}
1 \amp 0 \amp \frac{1}{4} \amp \frac{7}{4} \\
0 \amp 1 \amp \frac{-7}{2} \amp \frac{-5}{2} \\
0 \amp 0 \amp 1 \amp \frac{9}{31}
\end{array} \right)
\end{equation*}
Now I need to clear the column above the leading one. (The arithmetic is starting to get pretty annoying here, but I will press on. I made good use of a computer algebra system to do the fraction arithmetic for me.) First, I subtract \(\frac{1}{4}\) times the third row from the first row.
\begin{equation*}
\left( \begin{array}{ccc|c}
1 \amp 0 \amp 0 \amp \frac{52}{31} \\
0 \amp 1 \amp \frac{-7}{2} \amp \frac{-5}{2} \\
0 \amp 0 \amp 1 \amp \frac{9}{31}
\end{array} \right)
\end{equation*}
Then I add \(\frac{7}{2}\) times the third row to the second row.
\begin{equation*}
\left( \begin{array}{ccc|c}
1 \amp 0 \amp 0 \amp \frac{52}{31} \\
0 \amp 1 \amp 0 \amp \frac{-46}{31} \\
0 \amp 0 \amp 1 \amp \frac{9}{31}
\end{array} \right)
\end{equation*}
This is the reduced row echelon form. Now I can read off the solution.
\begin{align*}
\amp x = \frac{52}{31} \amp \amp y = \frac{-46}{31} \amp \amp
z = \frac{9}{31}
\end{align*}