The subspace \(\Span \left\{ \begin{pmatrix} -2 \\ 1 \\ -1
\end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 3\end{pmatrix}
\right\}\) is a plane in \(\RR^3\text{.}\) The vector \(\begin{pmatrix} -4 \\ -4 \\ 7\end{pmatrix} \) is a vector on this plane. Write this vector in terms of the given basis for the span.
To do this, I need to find the numbers \(a\) and \(b\) that satisfy the following:
\begin{equation*}
\begin{pmatrix} -4 \\ -4 \\ 7 \end{pmatrix} = a
\begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix} + b
\begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix}\text{.}
\end{equation*}
I’ll write each component of this vector equation separately.
\begin{align*}
-4 \amp = -2a + 0b\\
-4 \amp = a + (-2)b\\
7 \amp = -1a + 3b
\end{align*}
This is just a new linear system, with three equations and two variables, \(a\) and \(b\text{.}\) I can solve it using matrices and row reduction. The matrix representing this system is
\begin{equation*}
\left( \begin{array}{cc|c}
-2 \amp 0 \amp -4 \\
1 \amp -2 \amp -4 \\
-1 \amp 3 \amp 7
\end{array} \right) \text{.}
\end{equation*}
This row reduces to
\begin{equation*}
\left( \begin{array}{cc|c}
1 \amp 0 \amp 2 \\
0 \amp 1 \amp 3 \\
0 \amp 0 \amp 0
\end{array} \right) \text{.}
\end{equation*}
This is solvable and the solution is \(a = 2\) and \(b=3\text{.}\) This lets me write the vector in terms of the basis of the plane.
\begin{equation*}
\begin{pmatrix} -4 \\ -4 \\ 7 \end{pmatrix} = 2
\begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix} + 3
\begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix}
\end{equation*}
If the system wasn’t solvable (if the last row of the matrix turned out to be equivalent to \(0=1\)), then the vector I started with wouldn’t have been on the plane. Only vectors on the plane can be expressed in terms of the basis of the plane.