Activity 6.6.1.
In Subsection 6.3.2, I gave the matrices for rotations by \(\frac{\pi}{2}\) radians, \(\pi\) radians, and \(\frac{3\pi}{2}\) radians. I also defined reflections over the \(x\)-axis, \(y\)-axs, the line \(y=x\text{,}\) and the line \(y=-x\text{.}\) For all seven of these transformations, check that the matrix action acts as expected on the vectors \(\left( \begin{matrix} 1 \\ 0 \end{matrix} \right)\text{,}\) \(\left( \begin{matrix} 0 \\ 1 \end{matrix} \right)\text{,}\) \(\left( \begin{matrix} 1 \\ 1 \end{matrix} \right)\) and \(\left( \begin{matrix} 1 \\ -1 \end{matrix}
\right)\text{.}\)
Solution.
I have seven matrices, each of which acts on the four given vectors. I’ll go through the actions one by one, starting with rotation by \(\frac{\pi}{2}\text{.}\)
\begin{align*}
\left( \begin{matrix}
0 \amp -1 \\ 1 \amp 0
\end{matrix} \right)
\left( \begin{matrix}
1 \\ 0
\end{matrix} \right) =
\left( \begin{matrix}
0 + 0 \\ 1 + 0
\end{matrix} \right) =
\left( \begin{matrix}
0 \\ 1
\end{matrix} \right) \\
\left( \begin{matrix}
0 \amp -1 \\ 1 \amp 0
\end{matrix} \right)
\left( \begin{matrix}
0 \\ 1
\end{matrix} \right) =
\left( \begin{matrix}
0 - 1 \\ 0 + 0
\end{matrix} \right) =
\left( \begin{matrix}
-1 \\ 0
\end{matrix} \right) \\
\left( \begin{matrix}
0 \amp -1 \\ 1 \amp 0
\end{matrix} \right)
\left( \begin{matrix}
1 \\ 1
\end{matrix} \right) =
\left( \begin{matrix}
0 - 1 \\ 1 + 0
\end{matrix} \right) =
\left( \begin{matrix}
-1 \\ 1
\end{matrix} \right) \\
\left( \begin{matrix}
0 \amp -1 \\ 1 \amp 0
\end{matrix} \right)
\left( \begin{matrix}
1 \\ - 1
\end{matrix} \right) =
\left( \begin{matrix}
0 + 1 \\ 1 + 0
\end{matrix} \right) =
\left( \begin{matrix}
1 \\ 1
\end{matrix} \right)
\end{align*}
All four vectors are indeed sent to their rotations by a quarter turn. Now look at the rotation by \(\pi\text{.}\)
\begin{align*}
\left( \begin{matrix}
-1 \amp 0 \\ 0 \amp -1
\end{matrix} \right)
\left( \begin{matrix}
1 \\ 0
\end{matrix} \right) =
\left( \begin{matrix}
-1 + 0 \\ 0 + 0
\end{matrix} \right) =
\left( \begin{matrix}
-1 \\ 0
\end{matrix} \right) \\
\left( \begin{matrix}
-1 \amp 0 \\ 0 \amp -1
\end{matrix} \right)
\left( \begin{matrix}
0 \\ 1
\end{matrix} \right) =
\left( \begin{matrix}
0 + 0 \\ 0 - 1
\end{matrix} \right) =
\left( \begin{matrix}
0 \\ -1
\end{matrix} \right) \\
\left( \begin{matrix}
-1 \amp 0 \\ 0 \amp -1
\end{matrix} \right)
\left( \begin{matrix}
1 \\ 1
\end{matrix} \right) =
\left( \begin{matrix}
-1 + 0 \\ 0 + -1
\end{matrix} \right) =
\left( \begin{matrix}
-1 \\ -1
\end{matrix} \right) \\
\left( \begin{matrix}
-1 \amp 0 \\ 0 \amp -1
\end{matrix} \right)
\left( \begin{matrix}
1 \\ - 1
\end{matrix} \right) =
\left( \begin{matrix}
-1 + 0 \\ 0 + 1
\end{matrix} \right) =
\left( \begin{matrix}
-1 \\ 1
\end{matrix} \right)
\end{align*}
All of these vectors are indeed rotated by half a turn. (Notice that this is the same as “reflection” about the origin: each vector is sent to its negative. Now look at the rotation by \(\frac{3\pi}{2}\text{.}\)
\begin{align*}
\left( \begin{matrix}
0 \amp 1 \\ -1 \amp 0
\end{matrix} \right)
\left( \begin{matrix}
1 \\ 0
\end{matrix} \right) =
\left( \begin{matrix}
0 + 0 \\ -1 + 0
\end{matrix} \right) =
\left( \begin{matrix}
0 \\ -1
\end{matrix} \right) \\
\left( \begin{matrix}
0 \amp 1 \\ -1 \amp 0
\end{matrix} \right)
\left( \begin{matrix}
0 \\ 1
\end{matrix} \right) =
\left( \begin{matrix}
0 + 1 \\ 0 + 0
\end{matrix} \right) =
\left( \begin{matrix}
1 \\ 0
\end{matrix} \right) \\
\left( \begin{matrix}
0 \amp 1 \\ -1 \amp 0
\end{matrix} \right)
\left( \begin{matrix}
1 \\ 1
\end{matrix} \right) =
\left( \begin{matrix}
0 + 1 \\ -1 + 0
\end{matrix} \right) =
\left( \begin{matrix}
1 \\ -1
\end{matrix} \right) \\
\left( \begin{matrix}
0 \amp 1 \\ -1 \amp 0
\end{matrix} \right)
\left( \begin{matrix}
1 \\ - 1
\end{matrix} \right) =
\left( \begin{matrix}
0 - 1 \\ -1 + 0
\end{matrix} \right) =
\left( \begin{matrix}
-1 \\ -1
\end{matrix} \right)
\end{align*}
All of these vectors are sent to their rotation by three quarters of a turn. Notice that I could also interpret this a rotation by a quarter turn clockwise. Now look at reflection over the \(x\)-axis.
\begin{align*}
\left( \begin{matrix}
1 \amp 0 \\ 0 \amp -1
\end{matrix} \right)
\left( \begin{matrix}
1 \\ 0
\end{matrix} \right) =
\left( \begin{matrix}
1 + 0 \\ 0 + 0
\end{matrix} \right) =
\left( \begin{matrix}
1 \\ 0
\end{matrix} \right) \\
\left( \begin{matrix}
1 \amp 0 \\ 0 \amp -1
\end{matrix} \right)
\left( \begin{matrix}
0 \\ 1
\end{matrix} \right) =
\left( \begin{matrix}
0 + 0 \\ 0 - 1 \\
\end{matrix} \right) =
\left( \begin{matrix}
0 \\ -1
\end{matrix} \right) \\
\left( \begin{matrix}
1 \amp 0 \\ 0 \amp -1
\end{matrix} \right)
\left( \begin{matrix}
1 \\ 1
\end{matrix} \right) =
\left( \begin{matrix}
1 + 0 \\ 0 + -1
\end{matrix} \right) =
\left( \begin{matrix}
1 \\ -1
\end{matrix} \right) \\
\left( \begin{matrix}
1 \amp 0 \\ 0 \amp -1
\end{matrix} \right)
\left( \begin{matrix}
1 \\ - 1
\end{matrix} \right) =
\left( \begin{matrix}
1 + 0 \\ 0 + 1
\end{matrix} \right) =
\left( \begin{matrix}
1 \\ 1
\end{matrix} \right)
\end{align*}
The sign of the \(y\) coordinate of each vector is changed, which is exactly what I expect for reflection over the \(x\)-axis. Now look at reflection over the \(y\)-axis.
\begin{align*}
\left( \begin{matrix}
-1 \amp 0 \\ 0 \amp 1
\end{matrix} \right)
\left( \begin{matrix}
1 \\ 0
\end{matrix} \right) =
\left( \begin{matrix}
-1 + 0 \\ 0 + 0
\end{matrix} \right) =
\left( \begin{matrix}
-1 \\ 0
\end{matrix} \right) \\
\left( \begin{matrix}
-1 \amp 0 \\ 0 \amp 1
\end{matrix} \right)
\left( \begin{matrix}
0 \\ 1
\end{matrix} \right) =
\left( \begin{matrix}
0 + 0 \\ 0 + 1
\end{matrix} \right) =
\left( \begin{matrix}
0 \\ 1
\end{matrix} \right) \\
\left( \begin{matrix}
-1 \amp 0 \\ 0 \amp 1
\end{matrix} \right)
\left( \begin{matrix}
1 \\ 1
\end{matrix} \right) =
\left( \begin{matrix}
-1 + 0 \\ 0 + 1
\end{matrix} \right) =
\left( \begin{matrix}
-1 \\ 1
\end{matrix} \right) \\
\left( \begin{matrix}
-1 \amp 0 \\ 0 \amp 1
\end{matrix} \right)
\left( \begin{matrix}
1 \\ - 1
\end{matrix} \right) =
\left( \begin{matrix}
-1 + 0 \\ 0 - 1
\end{matrix} \right) =
\left( \begin{matrix}
-1 \\ -1
\end{matrix} \right)
\end{align*}
The \(x\) coordinate has now changed in sign, which is as expected. Now look at the reflection over the line \(y=x\text{.}\)
\begin{align*}
\left( \begin{matrix}
0 \amp 1 \\ 1 \amp 0
\end{matrix} \right)
\left( \begin{matrix}
1 \\ 0
\end{matrix} \right) =
\left( \begin{matrix}
0 + 0 \\ 1 + 0
\end{matrix} \right) =
\left( \begin{matrix}
0 \\ 1
\end{matrix} \right) \\
\left( \begin{matrix}
0 \amp 1 \\ 1 \amp 0
\end{matrix} \right)
\left( \begin{matrix}
0 \\ 1
\end{matrix} \right) =
\left( \begin{matrix}
0 + 1 \\ 0 + 0
\end{matrix} \right) =
\left( \begin{matrix}
1 \\ 0
\end{matrix} \right) \\
\left( \begin{matrix}
0 \amp 1 \\ 1 \amp 0
\end{matrix} \right)
\left( \begin{matrix}
1 \\ 1
\end{matrix} \right) =
\left( \begin{matrix}
0 + 1 \\ 1 + 0
\end{matrix} \right) =
\left( \begin{matrix}
1 \\ 1
\end{matrix} \right) \\
\left( \begin{matrix}
0 \amp 1 \\ 1 \amp 0
\end{matrix} \right)
\left( \begin{matrix}
1 \\ - 1
\end{matrix} \right) =
\left( \begin{matrix}
0 - 1 \\ 1 + 0
\end{matrix} \right) =
\left( \begin{matrix}
-1 \\ 1
\end{matrix} \right)
\end{align*}
The two coordinates are exchanged, which is exactly what I would expect for this reflection. Finally, look at the reflection over the line \(y=-x\text{.}\)
\begin{align*}
\left( \begin{matrix}
0 \amp -1 \\ -1 \amp 0
\end{matrix} \right)
\left( \begin{matrix}
1 \\ 0
\end{matrix} \right) =
\left( \begin{matrix}
0 + 0 \\ -1 + 0
\end{matrix} \right) =
\left( \begin{matrix}
0 \\ -1
\end{matrix} \right) \\
\left( \begin{matrix}
0 \amp -1 \\ -1 \amp 0
\end{matrix} \right)
\left( \begin{matrix}
0 \\ 1
\end{matrix} \right) =
\left( \begin{matrix}
0 - 1 \\ 0 + 0
\end{matrix} \right) =
\left( \begin{matrix}
-1 \\ 0
\end{matrix} \right) \\
\left( \begin{matrix}
0 \amp -1 \\ -1 \amp 0
\end{matrix} \right)
\left( \begin{matrix}
1 \\ 1
\end{matrix} \right) =
\left( \begin{matrix}
0 - 1 \\ -1 + 0
\end{matrix} \right) =
\left( \begin{matrix}
-1 \\ -1
\end{matrix} \right) \\
\left( \begin{matrix}
0 \amp -1 \\ -1 \amp 0
\end{matrix} \right)
\left( \begin{matrix}
1 \\ - 1
\end{matrix} \right) =
\left( \begin{matrix}
0 + 1 \\ -1 + 0
\end{matrix} \right) =
\left( \begin{matrix}
1 \\ -1
\end{matrix} \right)
\end{align*}
The coordinates are switched and the signs are changed, which is what I would expect with this reflection.