Activity 4.4.1.
Row reduce this matrix.
\begin{equation*}
\left( \begin{matrix}
1 \amp -3 \amp 0 \\
1 \amp 0 \amp 7 \\
0 \amp -4 \amp -2
\end{matrix} \right)
\end{equation*}
Solution.
I proceed step-by-step through the row reduction algorithm. I’ll be very explicit about the row operation in each step. The first row already has a leading one in the first column, so I don’t need to create one. When there is a leading one, I want to clear its column. I will start by subtracting row 1 from row 2.
\begin{equation*}
\left( \begin{matrix}
1 \amp -3 \amp 0 \\
0 \amp 3 \amp 7 \\
0 \amp -4 \amp -2
\end{matrix} \right)
\end{equation*}
This has cleared the first column other than the leading 1. Now I want to create a leading one in the second column if I can. To get that, I’ll divide the second row by 3.
\begin{equation*}
\left( \begin{matrix}
1 \amp -3 \amp 0 \\
0 \amp 1 \amp \frac{7}{3} \\
0 \amp -4 \amp -2
\end{matrix} \right)
\end{equation*}
Now I have a leading 1, so I want to clear its column. I’ll add 3 times row 2 to row 1 to clear the entry above the leading 1.
\begin{equation*}
\left( \begin{matrix}
1 \amp 0 \amp 7 \\
0 \amp 1 \amp \frac{7}{3} \\
0 \amp -4 \amp -2
\end{matrix} \right)
\end{equation*}
Then I’ll add 4 times row 2 to row 3 to clear the entry below the leading 1.
\begin{equation*}
\left( \begin{matrix}
1 \amp 0 \amp 7 \\
0 \amp 1 \amp \frac{7}{3} \\
0 \amp 0 \amp \frac{22}{3}
\end{matrix} \right)
\end{equation*}
That clears the second column. Now I want to create a leading 1 in the third column if I can. I can divide the last row by \(\frac{22}{3}\) to make a leading 1.
\begin{equation*}
\left( \begin{matrix}
1 \amp 0 \amp 7 \\
0 \amp 1 \amp \frac{7}{3} \\
0 \amp 0 \amp 1
\end{matrix} \right)
\end{equation*}
Then I need to clear the column above this leading 1. I subtract 7 times the third row from the first row.
\begin{equation*}
\left( \begin{matrix}
1 \amp 0 \amp 0 \\
0 \amp 1 \amp \frac{7}{3} \\
0 \amp 0 \amp 1
\end{matrix} \right)
\end{equation*}
Finally, I subtract \(\frac{7}{3}\) times the third row from the second row.
\begin{equation*}
\left( \begin{matrix}
1 \amp 0 \amp 0 \\
0 \amp 1 \amp 0 \\
0 \amp 0 \amp 1
\end{matrix} \right)
\end{equation*}
This is the row reduced form.