I will write \(u\) and \(v\) in components, take their difference and then apply the length operation. I will start with the left side and try to produce the right.
\begin{equation*}
|u-v| = \left| \left( \begin{matrix} u_1 \\ u_2 \\ u_3
\end{matrix} \right) - \left( \begin{matrix} v_1 \\ v_2 \\
v_3 \end{matrix} \right) \right|
\end{equation*}
The difference is done componentwise.
\begin{equation*}
\left| \left( \begin{matrix} u_1 \\ u_2 \\ u_3
\end{matrix} \right) - \left( \begin{matrix} v_1 \\ v_2 \\
v_3 \end{matrix} \right) \right| =
\left| \left( \begin{matrix} u_1 - v_1 \\ u_2 - v_2 \\ u_3
- v_3 \end{matrix} \right) \right|
\end{equation*}
Then I use the square root definition of the length.
\begin{equation*}
\left| \left( \begin{matrix} u_1 - v_1 \\ u_2 - v_2 \\ u_3
- v_3 \end{matrix} \right) \right| = \sqrt{(u_1-v_1)^2 +
(u_2-v_2)^2 + (u_3-v_3)^2}
\end{equation*}
Now, each of the three terms is square. Since they are square, any positive or negative will become positive since squares are always positive. Therefore, I could multiply by \((-1)\) inside the square root to no effect. This will interchange the order of the difference in each term.
\begin{equation*}
\sqrt{(u_1-v_1)^2 + (u_2-v_2)^2 + (u_3-v_3)^2} =
\sqrt{(v_1-u_1)^2 + (v_2-u_2)^2 + (v_3-u_3)^2}
\end{equation*}
Then I repeat the steps from before in reverse. This is the definition of the length of a vector with the terms in the squares as components.
\begin{equation*}
\sqrt{(v_1-u_1)^2 + (v_2-u_2)^2 + (v_3-u_3)^2} = \left|
\left( \begin{matrix} v_1 - u_1 \\ v_2 - u_2 \\ v_3 - u_3
\end{matrix} \right) \right|
\end{equation*}
Since each term is a difference, I can write this as the difference of two vectors.
\begin{equation*}
\left| \left( \begin{matrix} v_1 - u_1 \\ v_2 - u_2 \\ v_3
- u_3 \end{matrix} \right) \right| = \left| \left(
\begin{matrix} v_1 \\ v_2 \\ v_3 \end{matrix} \right) -
\left( \begin{matrix} u_1 \\ u_2 \\ u_3 \end{matrix}
\right) \right|
\end{equation*}
Finally, these are just the component of the vectors \(u\) and \(v\text{.}\)
\begin{equation*}
= \left| \left( \begin{matrix} v_1 \\ v_2 \\ v_3
\end{matrix} \right) - \left( \begin{matrix} u_1 \\ u_2 \\
u_3 \end{matrix} \right) \right| = |v-u|
\end{equation*}
I have started from the left and produced the right in a string of equality, so I have proven the desired result.
If I wanted to adapt this to a more general proof for \(\RR^n\text{,}\) the steps of the proof would be identical, but I would have vectors with \(n\) components instead of just three components. I would use ellipses to indicate the list of components. The proof would start like this.
\begin{equation*}
|u-v| = \left| \left( \begin{matrix} u_1 \\ u_2 \\ \vdots
\\ u_n \end{matrix} \right) - \left( \begin{matrix} v_1 \\
v_2 \\ \\ \vdots \\ v_n \end{matrix} \right) \right|
\end{equation*}
The difference is done componentwise.
\begin{equation*}
\left| \left( \begin{matrix} u_1 \\ u_2 \\\vdots \\ u_n
\end{matrix} \right) - \left( \begin{matrix} v_1 \\ v_2 \\
\vdots \\ v_n \end{matrix} \right) \right| =
\left| \left( \begin{matrix} u_1 - v_1 \\ u_2 - v_2 \\
\vdots \\ u_n - v_n \end{matrix} \right) \right|
\end{equation*}
I won’t repeat all the steps, but they would proceed exactly in the same sequence as before, resulting in \(|v-u|\) eventually at the end.