Find the dimension of this span.
\begin{equation*}
\Span \left\{
\begin{pmatrix}
4 \\ -1 \\ 0 \\ 2 \\ -8 \\ 3
\end{pmatrix},
\begin{pmatrix}
12 \\ 4 \\ -3 \\ 7 \\ 15 \\ 1
\end{pmatrix},
\begin{pmatrix}
0 \\ 5 \\ -2 \\ -2 \\ -14 \\ 3
\end{pmatrix},
\begin{pmatrix}
16 \\ 8 \\ -5 \\ 7 \\ -9 \\ 7
\end{pmatrix},
\begin{pmatrix}
12 \\ -6 \\ 1 \\ 11 \\ 43 \\ -5
\end{pmatrix},
\begin{pmatrix}
8 \\ 8 \\ -4 \\ 0 \\ -44 \\ 12
\end{pmatrix}
\right\}
\end{equation*}
To find the dimension of the span, I put the vectors of the span into a matrix (as rows, not columns).
\begin{equation*}
\begin{pmatrix}
4 \amp -1 \amp 0 \amp 2 \amp -8 \amp 3 \\
12 \amp 4 \amp -3 \amp 7 \amp 15 \amp 1 \\
0 \amp 5 \amp -2 \amp -2 \amp -14 \amp 3 \\
16 \amp 8 \amp -5 \amp 7 \amp -9 \amp 7 \\
12 \amp -6 \amp 1 \amp 11 \amp 43 \amp -5 \\
8 \amp 8 \amp -4 \amp 0 \amp -44 \amp 12
\end{pmatrix}
\end{equation*}
This row reduces to the following matrix.
\begin{equation*}
\begin{pmatrix}
1 \amp 0 \amp 0 \amp \frac{-3}{2} \amp 0 \amp 7 \\
0 \amp 1 \amp 0 \amp -8 \amp 0 \amp 25 \\
0 \amp 0 \amp 1 \amp -19 \amp 0 \amp 61 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0
\end{pmatrix}
\end{equation*}
There are three leading ones, so only three of the original six vectors are linearly independent. The rank of the matrix is three and the dimension of the span is three.