Activity 3.5.1.
Write the first vector as a linear combination of the second and third vectors.
\begin{equation*}
\left( \begin{matrix}
2 \\ 3
\end{matrix} \right),
\left( \begin{matrix}
1 \\ -1
\end{matrix} \right),
\left( \begin{matrix}
1 \\ 1
\end{matrix} \right)
\end{equation*}
Solution.
I need to write the first vector as a multiple of the second plus a multiple of the third.
\begin{equation*}
\left( \begin{matrix}
2 \\ 3
\end{matrix} \right) =
a \left( \begin{matrix}
1 \\ -1
\end{matrix} \right) +
b \left( \begin{matrix}
1 \\ 1
\end{matrix} \right)
\end{equation*}
If I look at the components, I get two equations.
\begin{align*}
2 \amp = a + b \\
3 \amp = -a + b
\end{align*}
I have to solve this system. If I isolate \(a\) in the first equation, I get \(a = 2-b\text{.}\) If I replace that in the second equation, I get \(3 = -2 + b + b\text{.}\) I can solve this to get \(b = \frac{5}{2}\text{.}\) Then the expression for \(a\) gives \(a = 2 - b = 2 - \frac{5}{2}
= \frac{-1}{2}\text{.}\) That lets me write the linear combination.
\begin{equation*}
\left( \begin{matrix}
2 \\ 3
\end{matrix} \right) =
\frac{-1}{2} \left( \begin{matrix}
1 \\ -1
\end{matrix} \right) +
\frac{5}{2} \left( \begin{matrix}
1 \\ 1
\end{matrix} \right)
\end{equation*}