Skip to main content
Course Notes for Linear Algebra
Remkes Kooistra
Contents
Search Book
close
Search Results:
No results.
Prev
Up
Next
\(\def\vs{{\it vs. }} \def\cf{{\it cf. }} \def\viz{{\it viz. }} \def\ie{{\it i.e. }} \def\etc{{\it etc. }} \def\eg{{\it e.g. }} \def\etal{{\it et al .}} \def\via{{\it via }} \def\adhoc{{\it ad hoc }} \def\apriori{{\it apriori }} \def\Afrak{\mathfrak{A}} \def\Bfrak{\mathfrak{B}} \def\Cfrak{\mathfrak{C}} \def\Dfrak{\mathfrak{D}} \def\Efrak{\mathfrak{E}} \def\Ffrak{\mathfrak{F}} \def\Gfrak{\mathfrak{G}} \def\Hfrak{\mathfrak{H}} \def\Ifrak{\mathfrak{I}} \def\Jfrak{\mathfrak{J}} \def\Kfrak{\mathfrak{K}} \def\Lfrak{\mathfrak{L}} \def\Mfrak{\mathfrak{M}} \def\Nfrak{\mathfrak{N}} \def\Ofrak{\mathfrak{O}} \def\Pfrak{\mathfrak{P}} \def\Qfrak{\mathfrak{Q}} \def\Rfrak{\mathfrak{R}} \def\Sfrak{\mathfrak{S}} \def\Tfrak{\mathfrak{T}} \def\Ufrak{\mathfrak{U}} \def\Vfrak{\mathfrak{V}} \def\Wfrak{\mathfrak{W}} \def\Xfrak{\mathfrak{X}} \def\Yfrak{\mathfrak{Y}} \def\Zfrak{\mathfrak{Z}} \def\afrak{\mathfrak{a}} \def\bfrak{\mathfrak{b}} \def\cfrak{\mathfrak{c}} \def\dfrak{\mathfrak{d}} \def\efrak{\mathfrak{e}} \def\ffrak{\mathfrak{f}} \def\gfrak{\mathfrak{g}} \def\hfrak{\mathfrak{h}} \def\ifrak{\mathfrak{i}} \def\jfrak{\mathfrak{j}} \def\kfrak{\mathfrak{k}} \def\lfrak{\mathfrak{l}} \def\mfrak{\mathfrak{m}} \def\nfrak{\mathfrak{n}} \def\ofrak{\mathfrak{o}} \def\pfrak{\mathfrak{p}} \def\qfrak{\mathfrak{q}} \def\rfrak{\mathfrak{r}} \def\sfrak{\mathfrak{s}} \def\tfrak{\mathfrak{t}} \def\ufrak{\mathfrak{u}} \def\vfrak{\mathfrak{v}} \def\wfrak{\mathfrak{w}} \def\xfrak{\mathfrak{x}} \def\yfrak{\mathfrak{y}} \def\zfrak{\mathfrak{z}} \def\AA{\mathbb{A}} \def\BB{\mathbb{B}} \def\CC{\mathbb{C}} \def\DD{\mathbb{D}} \def\EE{\mathbb{E}} \def\FF{\mathbb{F}} \def\GG{\mathbb{G}} \def\HH{\mathbb{H}} \def\II{\mathbb{I}} \def\JJ{\mathbb{J}} \def\KK{\mathbb{K}} \def\LL{\mathbb{L}} \def\MM{\mathbb{M}} \def\NN{\mathbb{N}} \def\OO{\mathbb{O}} \def\PP{\mathbb{P}} \def\QQ{\mathbb{Q}} \def\RR{\mathbb{R}} \def\SS{\mathbb{S}} \def\TT{\mathbb{T}} \def\UU{\mathbb{U}} \def\VV{\mathbb{V}} \def\WW{\mathbb{W}} \def\XX{\mathbb{X}} \def\YY{\mathbb{Y}} \def\ZZ{\mathbb{Z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\Ap{A^\prime} \def\Bp{B^\prime} \def\Cp{C^\prime} \def\Dp{D^\prime} \def\Ep{E^\prime} \def\Fp{F^\prime} \def\Gp{G^\prime} \def\Hp{H^\prime} \def\Ip{I^\prime} \def\Jp{J^\prime} \def\Kp{K^\prime} \def\Lp{L^\prime} \def\Mp{M^\prime} \def\Mp{N^\prime} \def\Op{O^\prime} \def\Pp{P^\prime} \def\Qp{Q^\prime} \def\Rp{R^\prime} \def\Sp{S^\prime} \def\Tp{T^\prime} \def\Up{U^\prime} \def\Vp{V^\prime} \def\Wp{W^\prime} \def\Xp{X^\prime} \def\Yp{Y^\prime} \def\Zp{Z^\prime} \def\ap{a^\prime} \def\bp{b^\prime} \def\cp{c^\prime} \def\dprime{d^\prime} \def\ep{e^\prime} \def\fp{f^\prime} \def\gp{g^\prime} \def\hp{h^\prime} \def\ip{i^\prime} \def\jp{j^\prime} \def\kp{k^\prime} \def\lp{l^\prime} \def\mp{m^\prime} \def\np{n^\prime} \def\op{o^\prime} \def\pp{p^\prime} \def\qp{q^\prime} \def\rp{r^\prime} \def\sp{s^\prime} \def\tp{t^\prime} \def\up{u^\prime} \def\vp{v^\prime} \def\wp{w^\prime} \def\xp{x^\prime} \def\yp{y^\prime} \def\zp{z^\prime} \def\App{A^{\prime\prime}} \def\Bpp{B^{\prime\prime}} \def\Cpp{C^{\prime\prime}} \def\Dpp{D^{\prime\prime}} \def\Epp{E^{\prime\prime}} \def\Fpp{F^{\prime\prime}} \def\Gpp{G^{\prime\prime}} \def\Hpp{H^{\prime\prime}} \def\Ipp{I^{\prime\prime}} \def\Jpp{J^{\prime\prime}} \def\Kpp{K^{\prime\prime}} \def\Lpp{L^{\prime\prime}} \def\Mpp{M^{\prime\prime}} \def\Mpp{N^{\prime\prime}} \def\Opp{O^{\prime\prime}} \def\Ppp{P^{\prime\prime}} \def\Qpp{Q^{\prime\prime}} \def\Rpp{R^{\prime\prime}} \def\Spp{S^{\prime\prime}} \def\Tpp{T^{\prime\prime}} \def\Upp{U^{\prime\prime}} \def\Vpp{V^{\prime\prime}} \def\Wpp{W^{\prime\prime}} \def\Xpp{X^{\prime\prime}} \def\Ypp{Y^{\prime\prime}} \def\Zpp{Z^{\prime\prime}} \def\app{a^{\prime\prime}} \def\bpp{b^{\prime\prime}} \def\cpp{c^{\prime\prime}} \def\dpp{d^{\prime\prime}} \def\epp{e^{\prime\prime}} \def\fpp{f^{\prime\prime}} \def\gpp{g^{\prime\prime}} \def\hpp{h^{\prime\prime}} \def\ipp{i^{\prime\prime}} \def\jpp{j^{\prime\prime}} \def\kpp{k^{\prime\prime}} \def\lpp{l^{\prime\prime}} \def\mpp{m^{\prime\prime}} \def\npp{n^{\prime\prime}} \def\opp{o^{\prime\prime}} \def\ppp{p^{\prime\prime}} \def\qpp{q^{\prime\prime}} \def\rpp{r^{\prime\prime}} \def\spp{s^{\prime\prime}} \def\tpp{t^{\prime\prime}} \def\upp{u^{\prime\prime}} \def\vpp{v^{\prime\prime}} \def\wpp{w^{\prime\prime}} \def\xpp{x^{\prime\prime}} \def\ypp{y^{\prime\prime}} \def\zpp{z^{\prime\prime}} \def\abar{\overline{a}} \def\bbar{\overline{b}} \def\cbar{\overline{c}} \def\dbar{\overline{d}} \def\ebar{\overline{e}} \def\fbar{\overline{f}} \def\gbar{\overline{g}} \def\ibar{\overline{i}} \def\jbar{\overline{j}} \def\kbar{\overline{k}} \def\lbar{\overline{l}} \def\mbar{\overline{m}} \def\nbar{\overline{n}} \def\obar{\overline{o}} \def\pbar{\overline{p}} \def\qbar{\overline{q}} \def\rbar{\overline{r}} \def\sbar{\overline{s}} \def\tbar{\overline{t}} \def\ubar{\overline{u}} \def\vbar{\overline{v}} \def\wbar{\overline{w}} \def\xbar{\overline{x}} \def\ybar{\overline{y}} \def\zbar{\overline{z}} \def\Abar{\overline{A}} \def\Bbar{\overline{B}} \def\Cbar{\overline{C}} \def\Dbar{\overline{D}} \def\Ebar{\overline{E}} \def\Fbar{\overline{F}} \def\Gbar{\overline{G}} \def\Hbar{\overline{H}} \def\Ibar{\overline{I}} \def\Jbar{\overline{J}} \def\Kbar{\overline{K}} \def\Lbar{\overline{L}} \def\Mbar{\overline{M}} \def\Nbar{\overline{N}} \def\Obar{\overline{O}} \def\Pbar{\overline{P}} \def\Qbar{\overline{Q}} \def\Rbar{\overline{R}} \def\Sbar{\overline{S}} \def\Tbar{\overline{T}} \def\Ubar{\overline{U}} \def\Vbar{\overline{V}} \def\Wbar{\overline{W}} \def\Xbar{\overline{X}} \def\Ybar{\overline{Y}} \def\Zbar{\overline{Z}} \def\aunder{\underline{a}} \def\bunder{\underline{b}} \def\cunder{\underline{c}} \def\dunder{\underline{d}} \def\eunder{\underline{e}} \def\funder{\underline{f}} \def\gunder{\underline{g}} \def\hunder{\underline{h}} \def\iunder{\underline{i}} \def\junder{\underline{j}} \def\kunder{\underline{k}} \def\lunder{\underline{l}} \def\munder{\underline{m}} \def\nunder{\underline{n}} \def\ounder{\underline{o}} \def\punder{\underline{p}} \def\qunder{\underline{q}} \def\runder{\underline{r}} \def\sunder{\underline{s}} \def\tunder{\underline{t}} \def\uunder{\underline{u}} \def\vunder{\underline{v}} \def\wunder{\underline{w}} \def\xunder{\underline{x}} \def\yunder{\underline{y}} \def\zunder{\underline{z}} \def\Aunder{\underline{A}} \def\atilde{\widetilde{a}} \def\btilde{\widetilde{b}} \def\ctilde{\widetilde{c}} \def\dtilde{\widetilde{d}} \def\etilde{\widetilde{e}} \def\ftilde{\widetilde{f}} \def\gtilde{\widetilde{g}} \def\htilde{\widetilde{h}} \def\itilde{\widetilde{i}} \def\jtilde{\widetilde{j}} \def\ktilde{\widetilde{k}} \def\ltilde{\widetilde{l}} \def\mtilde{\widetilde{m}} \def\ntilde{\widetilde{n}} \def\otilde{\widetilde{o}} \def\ptilde{\widetilde{p}} \def\qtilde{\widetilde{q}} \def\rtilde{\widetilde{r}} \def\stilde{\widetilde{s}} \def\ttilde{\widetilde{t}} \def\utilde{\widetilde{u}} \def\vtilde{\widetilde{v}} \def\wtilde{\widetilde{w}} \def\xtilde{\widetilde{x}} \def\ytilde{\widetilde{y}} \def\ztilde{\widetilde{z}} \def\Atilde{\widetilde{A}} \def\Btilde{\widetilde{B}} \def\Ctilde{\widetilde{C}} \def\Dtilde{\widetilde{D}} \def\Etilde{\widetilde{E}} \def\Ftilde{\widetilde{F}} \def\Gtilde{\widetilde{G}} \def\Htilde{\widetilde{H}} \def\Itilde{\widetilde{I}} \def\Jtilde{\widetilde{J}} \def\Ktilde{\widetilde{K}} \def\Ltilde{\widetilde{L}} \def\Mtilde{\widetilde{M}} \def\Ntilde{\widetilde{N}} \def\Otilde{\widetilde{O}} \def\Ptilde{\widetilde{P}} \def\Qtilde{\widetilde{Q}} \def\Rtilde{\widetilde{R}} \def\Stilde{\widetilde{S}} \def\Ttilde{\widetilde{T}} \def\Utilde{\widetilde{U}} \def\Vtilde{\widetilde{V}} \def\Wtilde{\widetilde{W}} \def\Xtilde{\widetilde{X}} \def\Ytilde{\widetilde{Y}} \def\Ztilde{\widetilde{Z}} \def\Alphatilde{\widetilde{\Alpha}} \def\Betatilde{\widetilde{\Beta}} \def\Gammatilde{\widetilde{\Gamma}} \def\Deltatilde{\widetilde{\Delta}} \def\Epsilontilde{\widetilde{\Epsilon}} \def\Zetatilde{\widetilde{\Zeta}} \def\Etatilde{\widetilde{\Eta}} \def\Thetatilde{\widetilde{\Theta}} \def\Iotatilde{\widetilde{\Iota}} \def\Kappatilde{\widetilde{\Kappa}} \def\Lambdatilde{\widetilde{\Lamdba}} \def\Mutilde{\widetilde{\Mu}} \def\Nutilde{\widetilde{\Nu}} \def\Xitilde{\widetilde{\Xi}} \def\Omicrontilde{\widetilde{\Omicron}} \def\Pitilde{\widetilde{\Pi}} \def\Rhotilde{\widetilde{\Rho}} \def\Sigmatilde{\widetilde{\Sigma}} \def\Tautilde{\widetilde{\Tau}} \def\Upsilontilde{\widetilde{\Upsilon}} \def\Phitilde{\widetilde{\Phi}} \def\Chitilde{\widetilde{\Chi}} \def\Psitilde{\widetilde{\Psi}} \def\Omegatilde{\widetilde{\Omega}} \def\alphatilde{\widetilde{\alpha}} \def\betatilde{\widetilde{\beta}} \def\gammatilde{\widetilde{\gamma}} \def\deltatilde{\widetilde{\delta}} \def\epsilontilde{\widetilde{\epsilon}} \def\zetatilde{\widetilde{\zeta}} \def\etatilde{\widetilde{\eta}} \def\thetatilde{\widetilde{\theta}} \def\iotatilde{\widetilde{\iota}} \def\kappatilde{\widetilde{\kappa}} \def\lambdatilde{\widetilde{\lamdba}} \def\mutilde{\widetilde{\mu}} \def\nutilde{\widetilde{\nu}} \def\xitilde{\widetilde{\xi}} \def\omicrontilde{\widetilde{\omicron}} \def\pitilde{\widetilde{\pi}} \def\rhotilde{\widetilde{\rho}} \def\sigmatilde{\widetilde{\sigma}} \def\tautilde{\widetilde{\tau}} \def\upsilontilde{\widetilde{\upsilon}} \def\phitilde{\widetilde{\phi}} \def\chitilde{\widetilde{\chi}} \def\psitilde{\widetilde{\psi}} \def\omegatilde{\widetilde{\omega}} \def\Alphabar{\bar{\Alpha}} \def\Betabar{\bar{\Beta}} \def\Gammabar{\bar{\Gamma}} \def\Deltabar{\bar{\Delta}} \def\Epsilonbar{\bar{\Epsilon}} \def\Zetabar{\bar{\Zeta}} \def\Etabar{\bar{\Eta}} \def\Thetabar{\bar{\Theta}} \def\Iotabar{\bar{\Iota}} \def\Kappabar{\bar{\Kappa}} \def\Lambdabar{\bar{\Lamdba}} \def\Mubar{\bar{\Mu}} \def\Nubar{\bar{\Nu}} \def\Xibar{\bar{\Xi}} \def\Omicronbar{\bar{\Omicron}} \def\Pibar{\bar{\Pi}} \def\Rhobar{\bar{\Rho}} \def\Sigmabar{\bar{\Sigma}} \def\Taubar{\bar{\Tau}} \def\Upsilonbar{\bar{\Upsilon}} \def\Phibar{\bar{\Phi}} \def\Chibar{\bar{\Chi}} \def\Psibar{\bar{\Psi}} \def\Omegabar{\bar{\Omega}} \def\alphabar{\bar{\alpha}} \def\betabar{\bar{\beta}} \def\gammabar{\bar{\gamma}} \def\deltabar{\bar{\delta}} \def\epsilonbar{\bar{\epsilon}} \def\zetabar{\bar{\zeta}} \def\etabar{\bar{\eta}} \def\thetabar{\bar{\theta}} \def\iotabar{\bar{\iota}} \def\kappabar{\bar{\kappa}} \def\lambdabar{\bar{\lamdba}} \def\mubar{\bar{\mu}} \def\nubar{\bar{\nu}} \def\xibar{\bar{\xi}} \def\omicronbar{\bar{\omicron}} \def\pibar{\bar{\pi}} \def\rhobar{\bar{\rho}} \def\sigmabar{\bar{\sigma}} \def\taubar{\bar{\tau}} \def\upsilonbar{\bar{\upsilon}} \def\phibar{\bar{\phi}} \def\chibar{\bar{\chi}} \def\psibar{\bar{\psi}} \def\omegabar{\bar{\omega}} \def\del{\partial} \def\delbar{\overline{\partial}} \def\Cech{\check{C}} \def\half{\frac{1}{2}} \def\defeq{\mathrel{\mathop:}=} \def\alg{\mathrm{alg}} \def\Alt{\mathrm{Alt}} \def\Amp{\mathrm{Amp}} \def\Arg{\mathrm{Arg}} \def\an{\mathrm{an}} \def\anti{\mathrm{anti}} \def\Ap{\mathrm{Ap}} \def\arcsinh{\mathrm{arcsinh\hspace{0.07cm}}} \def\arccosh{\mathrm{arccosh\hspace{0.07cm}}} \def\arctanh{\mathrm{arctanh\hspace{0.07cm}}} \def\arccsch{\mathrm{arccsch\hspace{0.07cm}}} \def\arcsech{\mathrm{arcsech\hspace{0.07cm}}} \def\arccoth{\mathrm{arccoth\hspace{0.07cm}}} \def\arccsc{\mathrm{arccsc\hspace{0.07cm}}} \def\arcsec{\mathrm{arcsec\hspace{0.07cm}}} \def\arccot{\mathrm{arccot\hspace{0.07cm}}} \def\arg{\mathrm{arg}} \def\BC{\mathrm{BC}} \def\Bel{\mathrm{Bel}} \def\calCH{\mathcal{CH}} \def\csch{\mathrm{csch}\hspace{0.07cm}} \def\CH{\mathrm{CH}} \def\ch{\mathrm{ch}} \def\closed{\mathrm{closed}} \def\codim{\mathrm{codim}} \def\coth{\mathrm{coth}\hspace{0.07cm}} \def\Coh{\mathfrak{Coh}} \def\Coker{\mathrm{Coker}} \def\Cone{\mathrm{Cone}} \def\darg{d\mathrm{arg}} \def\Db{\mathrm{Db}} \def\dclosed{\mathrm{d-closed}} \def\deg{\mathrm{deg}} \def\dim{\mathrm{dim}} \def\divisor{\mathrm{div}} \def\dlog{d\mathrm{log}} \def\DNE{\mathrm{DNE}} \def\DR{\mathrm{DR}} \def\DST{\mathrm{DST}} \def\exp{\mathrm{exp}} \def\FLB{\mathrm{FLB}} \def\FLS{\mathrm{FLS}} \def\Gr{\mathrm{Gr}} \def\Hzar{H_{\mathrm{Zar}}} \def\Hol{\mathrm{Hol}} \def\Id{\mathrm{Id}} \def\Image{\mathrm{Im}} \def\Ka{\mathcal{K}_A} \def\Ker{\mathrm{Ker}} \def\kod{\mathrm{kod}} \def\Kx{\mathcal{K}_X} \def\Kz{\mathcal{K}_Z} \def\log{\mathrm{log}} \def\Log{\mathrm{Log}} \def\Li{\mathrm{Li}} \def\min{\mathrm{min}} \def\Mon{\mathrm{Mon}} \def\Nef{\mathrm{Nef}} \def\NS{\mathrm{NS}} \def\Oa{\mathcal{O}_A} \def\Ox{\mathcal{O}_X} \def\Oz{\mathcal{O}_Z} \def\Perp{\mathrm{Perp}} \def\Pic{\mathrm{Pic}} \def\Proj{\mathrm{Proj}} \def\rank{\mathrm{rank}} \def\Rat{\mathrm{Rat}} \def\Real{\mathrm{Re}} \def\reg{\mathrm{reg}} \def\Res{\mathrm{Res}} \def\res{\mathrm{res}} \def\Ric{\mathrm{Ric}} \def\sech{\mathrm{sech}\hspace{0.07cm}} \def\Span{\mathrm{Span}} \def\Spec{\mathrm{Spec}} \def\sing{\mathrm{sing}} \def\Singx{\mathrm{Sing}(X)} \def\sheafKer{\mathcal{\Ker}} \def\sheafIm{\mathcal{\Im}} \def\Span{\mathrm{Span}} \def\Spin{\mathrm{Spin}} \def\Str{\mathrm{Str}} \def\td{\mathrm{td}} \def\tr{\mathrm{tr}} \def\Todd{\mathrm{Todd}} \def\tor{\mathrm{tor}} \def\trdeg{\mathrm{trdeg}} \def\Zar{\mathrm{Zar}} \def\ZFLS{\mathrm{ZFLS}} \usepackage{tikz} \usepackage{tkz-graph} \usepackage{tkz-euclide} \usetikzlibrary{patterns} \usetikzlibrary{positioning} \usetikzlibrary{matrix,arrows} \usetikzlibrary{calc} \usetikzlibrary{shapes} \usetikzlibrary{through,intersections,decorations,shadows,fadings} \usepackage{pgfplots} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9} \newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}} \)
Front Matter
1
Week 1
1.1
Introduction
1.1.1
Themes of Linear Algebra
1.1.2
Mathematical Thinking and Writing
1.2
Euclidean Space
1.2.1
Definitions
1.2.2
Points or Directions?
1.2.3
Local Direction Vectors
1.3
Vector Arithmetic
1.3.1
Linear Operations
1.4
Higher Dimensions
1.4.1
New Environments
1.4.2
Spheres
1.4.3
Cubes
1.4.4
Cross-Polytopes
1.5
Writing Proofs
1.5.1
What Is A Proof?
1.5.2
How to Write a Proof
1.5.3
Proof by Contradiction
1.6
Proofs - Vector Arithmetic
1.6.1
Properties of Vector Arithmetic
1.6.2
Commutativity
1.6.3
Associativity
1.6.4
Distribution
1.7
Week 1 Activity
1.7.1
Higher-dimensional Space
1.7.2
Vector Arithmetic
1.7.3
Proof Questions
1.7.4
Conceptual Review Questions
2
Week 2
2.1
Dot Product
2.1.1
Definition
2.1.2
Properties of the Dot Product
2.2
Cross Product
2.2.1
Definition of the Cross Product
2.2.2
Angular Motion
2.3
Sets and Structures
2.3.1
Sets
2.3.2
Sets with Structure
2.4
Proofs - Dot and Cross Products
2.4.1
Prooving the Dot Product Properties
2.5
Week 2 Activity
2.5.1
Dot Products
2.5.2
Angles Between Vectors
2.5.3
Cross Product
2.5.4
Sets with Structure
2.5.5
Proof Questions
2.5.6
Conceptual Review Questions
3
Week 3
3.1
Spans and Subspaces
3.1.1
Definitions
3.1.2
Linear and Affine Subspaces
3.1.3
Dimension and Basis
3.2
Loci
3.2.1
Definition of a Locus
3.2.2
Familiar Loci
3.2.3
Intersection
3.3
Equations of Planes
3.3.1
Dot Products and Loci
3.3.2
An Algorithm for Equations of Planes
3.4
Proofs - Linear Subspaces
3.4.1
Proving Some Properties of Linear Subspaces
3.5
Week 3 Activity
3.5.1
Linear Combinations
3.5.2
Linear Independence
3.5.3
Spans and Bases
3.5.4
Equations of Planes and Hyperplanes
3.5.5
Proof Questions
3.5.6
Conceptual Review Questions
4
Week 4
4.1
Matrices
4.1.1
Definition of a Matrix
4.2
Solving Systems and Row Reduction
4.2.1
System of Linear Equations
4.2.2
Matrix Represetation of Systems of Linear Equations
4.2.3
Row Operations and Gaussian Elimination
4.2.4
Examples of Row Reduction
4.3
Description by Parameters
4.3.1
Solution Spaces and Free Parameters
4.4
Week 4 Activity
4.4.1
Row Reduction
4.4.2
Solving Linear Systems
4.4.3
Conceptual Review Questions
5
Week 5
5.1
Dimensions of Spans
5.1.1
Rank
5.1.2
Dimensions of Spans
5.1.3
5.2
Linear Combinations
5.2.1
Writing Linear Combinations
5.2.2
Bases for Spans
5.3
Dimensions of Loci
5.4
Week 5 Activity
5.4.1
Dimensions and Bases of Spans
5.4.2
Dimensions and Bases of Loci
5.4.3
Calculating Linear Combinations
5.4.4
Conceptual Review Questions
6
Week 6
6.1
Linear Transformations
6.1.1
Definitions
6.1.2
Composition
6.1.3
Symmetry
6.2
Matrices and Transformations
6.2.1
Matrix Representation of Linear Transformations
6.2.2
Composition and Matrix Multiplication
6.3
Examples in
\(\RR^2\)
6.3.1
Five Types
6.3.2
Matrices of the Five Types
6.4
Examples in
\(\RR^3\)
6.4.1
Examples in
\(\RR^3\)
6.5
Proofs - Matrix Actions
6.5.1
General Properties of the Matrix Action
6.5.2
Properties of Transformations in
\(\RR^2\)
6.6
Week 6 Activity
6.6.1
Matrix Action
6.6.2
Matrix Multiplication
6.6.3
Proof Questions
6.6.4
Conceptual Review Questions
7
Week 7
7.1
Inverse Linear Transforms and Matrix Inversion
7.1.1
Inverse Transforms
7.1.2
Inverse Matrices
7.1.3
Calculating Inverse Matrices
7.2
Transformations of Spans and Loci
7.2.1
Transformations of Spans
7.2.2
Transformation of Loci
7.3
Kernels and Images
7.3.1
Row and Column Spaces
7.3.2
Images
7.3.3
Kernels
7.3.4
A Central Connection Idea
7.4
Proofs - Inversion, Kernels, Images
7.4.1
Interactions between Definitions
7.5
Week 7 Activity
7.5.1
Inversion
7.5.2
Transformations of Spans
7.5.3
Kernels and Images
7.5.4
Proof Questions
7.5.5
Conceptual Review Questions
8
Week 8
8.1
Determinants
8.1.1
Concept of the Determinant
8.1.2
Definition of the Determinant
8.2
Cofactor Expansion
8.2.1
\(2 \times 2\)
determinants
8.2.2
The Cofactor Algorithm
8.3
Properties of Determinants
8.3.1
Determinants and Composition
8.3.2
Other Algebraic Properties
8.4
Orthogonality and Symmetry
8.4.1
Preserving Lengths and Angles
8.5
Week 8 Activity
8.5.1
Calculating Determinants
8.5.2
Orthogonal Matrices
8.5.3
Proof Questions
8.5.4
Conceptual Review Questions
9
Week 9
9.1
Dihedral Groups
9.1.1
Dihedral Groups
9.1.2
The Group
\(D_4\)
9.2
Matrix Groups
9.2.1
Symmetry, Again
9.2.2
Transformations that Preserve Size and Orientation
9.3
Abstract Vector Spaces
9.3.1
Abstract and Euclidean Space
9.3.2
Examples of Abstract Vector Spaces
9.4
Week 9 Activity
9.4.1
Dihedral Groups
9.4.2
Linear Algebra of Polynomials
9.4.3
Conceptual Review Questions
10
Week 10
10.1
Eigenvectors, Eigenvalues and Spectra
10.1.1
Definitions
10.1.2
Calculation of Eigenvalues and Eigenvectors
10.2
Eigenfunctions
10.2.1
Differential Operators
10.3
Week 10 Activity
10.3.1
Eigenvalues and Eigenvectors
10.3.2
Eigenfunctions
10.3.3
Proof Questions
10.3.4
Conceptual Review Questions
11
Week 11
11.1
Dynamical Systems
11.1.1
Theory of Dynamical Systems
11.1.2
Long Term Behaviour of Dynamical Systems
11.2
Leslie Matrices
11.2.1
Age-Structured Populations
11.2.2
Leslie Matrices
11.2.3
Examples of Leslie Matrices
11.3
Stochastic Matrices and Markov Chains
11.3.1
Graphs and Probability
11.3.2
Definitions
11.3.3
Markov Longterm Behaviour
11.3.4
Markov Chain Examples
11.3.5
Games of Chance
11.3.6
The Gambler’s Ruin
11.4
Week 11 Activity
11.4.1
Leslie Matrices
11.4.2
Markov Chains for Probability Graphs
11.4.3
Conceptual Review Questions
Backmatter
Colophon
Colophon
This book was authored in PreTeXt.