Skip to main content

Section 13.9 Week 11 Assignment

  1. Test this series for convergence (4).
    \begin{equation*} \sum_{n=0}^\infty \frac{n!(n+1)!}{(n+3)!} \end{equation*}
  2. Test this series for convergence (4).
    \begin{equation*} \sum_{n=1}^\infty \frac{(-1)^n n \ln n}{\sqrt[3]{n}} \end{equation*}
  3. Test this series for convergence (4).
    \begin{equation*} \sum_{n=2}^\infty \frac{4^n + 5^n}{6^n} \end{equation*}
  4. Test this series for convergence. (4)
    \begin{equation*} \sum_{n=1}^\infty \frac{5^n + (2n)!}{8^n} \end{equation*}
  5. Test this series for convergence. (4)
    \begin{equation*} \sum_{n=0}^\infty \frac{n^5 + 3n - 7}{n^7 + 8n^4 + 1} \end{equation*}
  6. Test this series for convergence (4).
    \begin{equation*} \sum_{n=3}^\infty \frac{(8x+5) \ln (4x^2 + 5x + 3) }{4x^2 + 5x + 3} \end{equation*}
  7. When re-arranging the alternating harmonic series, in the notes and videos I said that I could take any pattern of positive and negative terms. What happens if you try to sum all the positive terms before all the negative terms? Why doesn’t this result in a reasonable value for the series? (4)