First, I check if the rational function is proper. If it isn’t, I need to do polynomial long division. This is not a proper fraction, so I need to do polynomial long division.
|
|
|
|
|
|
|
|
|
|
|
|
|
\(x\) |
\(-\) |
\(4\) |
\(x^3\) |
\(+\) |
\(4x^2\) |
\(+\) |
\(5x\) |
\(+\) |
\(0\) |
\(x^4\) |
\(+\) |
\(0\) |
\(-\) |
\(x^2\) |
\(+\) |
\(0\) |
\(-\) |
\(1\) |
|
|
|
|
|
|
|
\(x^4\) |
\(+\) |
\(4x^3\) |
\(+\) |
\(5x^2\) |
|
|
|
|
|
|
|
|
|
|
|
|
|
\(-4x^3\) |
\(-\) |
\(6x^2\) |
\(+\) |
\(0\) |
|
|
|
|
|
|
|
|
|
|
|
\(-4x^3\) |
\(-\) |
\(16x^2\) |
\(-\) |
\(20x\) |
|
|
|
|
|
|
|
|
|
|
|
|
|
\(10x^2\) |
\(+\) |
\(20x\) |
\(-\) |
\(1\) |
The output of the long division process is the sum of a polynomial and a proper rational function.
\begin{align*}
\int \frac{x^4-x^2-1}{x(x^2+4x+5)}
\frac{x^4-x^2-1}{x(x^2+4x+5)} \amp = x - 4 + \frac{10x^2 +
20x - 1}{x(x^2+4x+5)}
\end{align*}
Next, I write the partial fraction decomposition with unknowns. I take the right side to common denominator and group the coefficients of the numerator.
\begin{align*}
\frac{10x^2 + 20x - 1}{x(x^2+4x+5)} \amp = \frac{a}{x} +
\frac{bx+c}{x^2+4x+5} = \frac{a(x^2+4x+5) +
(bx+c)(x)}{x(x^2+4x+5)} \\
\amp = \frac{ax^2 + 4ax + 5a + bx^2 + cx}{x(x^2+4x+5)} =
\frac{(a+b)x^2 + (4a+c)x + 5a}{x(x^2+4x+5)}
\end{align*}
I compare the numerator coefficients to get the system of equations. I proceed to solve the system. (I haven’t anotated all the steps of isolating and replacing variables.)
\begin{align*}
5a \amp = -1 \implies a = \frac{-1}{5} \\
4a + c \amp = 20 \implies c = 20 - 4a = 20 + \frac{4}{5} =
\frac{104}{5}\\
a+b \amp = 10 \implies b = 10 - a = 10 - \frac{-1}{5} =
\frac{51}{5}
\end{align*}
The numerator coefficients give me the partial fraction decomposition. Now that I have completed partial fractions, I integrate the pieces using the four basic rational function integrals.
\begin{align*}
\frac{10x^2 + 20x}{x(x^2+4x+5)} \amp = \frac{1}{5} \left[
\frac{-1}{x} + \frac{51x+104}{x^2+4x+5} \right] \\
\int \frac{x^4-x^2-1}{x(x^2+4x+5)} \amp = \frac{-1}{5} \int
\frac{1}{x} dx + \frac{1}{5} \int \frac{51x + 104}{x^2+4x+5}
dx
\end{align*}
The linear pieces are logarithm integrals. The quadratic piece is more work. I have to manipulate the numerator to get the derivative of the denominator and seperate that piece for a substitution integral. The remainder is an arctangent integral. After adjusting the constants, I use the standard form to complete the arctangent integral.
\begin{align*}
\amp = \frac{-1}{5} \ln |x| + \frac{1}{5}\frac{51}{2} \int
\frac{2x + \frac{208}{51}}{x^2+4x+5} dx \\
\amp = \frac{-1}{5} \ln |x| + \frac{51}{10} \int \frac{2x +
4 + \frac{4}{51}}{x^2 + 4x + 5} dx \\
\amp = \frac{-1}{5} \ln |x| + \frac{51}{10} \int \frac{2x +
4}{x^2 + 4x + 5}dx + \frac{51}{10} \frac{4}{51} \int
\frac{1}{x^2 + 4x +5} dx \\
\amp = \frac{-1}{5} \ln |x| + \frac{51}{10} \ln |x^2 + 4x +
5| + \frac{2}{5} \int \frac{1}{x^2 + 4x + 4 + 1} dx \\
\amp = \frac{-1}{5} \ln |x| + \frac{51}{10} \ln |x^2 + 4x +
5| + \frac{2}{5} \int \frac{1}{(x+2)^2 + 1} dx \\
\amp = \frac{-1}{5} \ln |x| + \frac{51}{10} \ln |x^2 + 4x +
5| + \frac{2}{5} \arctan (x+2) + c
\end{align*}
Finally, I put the two polynomial pieces back in to get the complete antiderivative
\begin{equation*}
\frac{x^2}{2} - 4x + \frac{-1}{5} \ln |x| + \frac{51}{10}
\ln |x^2 + 4x + 5| + \frac{2}{5} \arctan (x+2) + c
\end{equation*}