First, I do partial fractions for the rational function. I’ve not shown the steps of partial fraction in this key, just the result.
\begin{align*}
\frac{1}{n^2 + 4n + 3} \amp = \frac{1}{(n+3)(n+1)} =
\frac{\frac{1}{2}}{n+1} + \frac{\frac{-1}{2}}{n+3} \\
\sum_{n=1}^\infty \frac{1}{n^2 + 3n + 4} \amp =
\frac{1}{2} \sum_{n=1}^\infty \frac{1}{n+1} -
\frac{1}{n+3}
\end{align*}
The I calculate the first few parial sums. I try to produce a pattern from these partial sums.
\begin{align*}
s_1 \amp = \frac{1}{2} \left[ \frac{1}{2} - \frac{1}{4}
\right] \\
s_2 \amp = \frac{1}{2} \left[ \frac{1}{2} - \frac{1}{4}
+ \frac{1}{3} - \frac{1}{5} \right]\\
s_3 \amp = \frac{1}{2} \left[ \frac{1}{2} - \frac{1}{4}
+ \frac{1}{3} - \frac{1}{5} + \frac{1}{4} -
\frac{1}{6}\right] \\
\amp = \frac{1}{2} \left[ \frac{1}{2} + \frac{1}{3} -
\frac{1}{5} - \frac{1}{6}\right] \\
s_4 \amp = \frac{1}{2} \left[ \frac{1}{2} - \frac{1}{4}
+ \frac{1}{3} - \frac{1}{5} + \frac{1}{4} - \frac{1}{6}
+ \frac{1}{5} - \frac{1}{7} \right]\\
\amp = \frac{1}{2} \left[ \frac{1}{2} + \frac{1}{3} -
\frac{1}{6} - \frac{1}{7}\right]\\
s_5 \amp = \frac{1}{2} \left[ \frac{1}{2} - \frac{1}{4}
+ \frac{1}{3} - \frac{1}{5} + \frac{1}{4} - \frac{1}{6}
+ \frac{1}{5} - \frac{1}{7} + \frac{1}{6} - \frac{1}{8}
\right]\\
\amp = \frac{1}{2} \left[ \frac{1}{2} + \frac{1}{3} -
\frac{1}{7} - \frac{1}{8}\right]
\end{align*}
This is enough for me to conclude a pattern.
\begin{align*}
s_n \amp = \frac{1}{2} \left[ \frac{1}{2} + \frac{1}{3}
- \frac{1}{n+2} - \frac{1}{n+3} \right]
\end{align*}
The value of the series is the limit of the partial sums.
\begin{align*}
\sum_{n=1}^\infty \frac{1}{n^2 + 3n + 4} \amp = \lim_{n
\rightarrow \infty} \frac{1}{2} \left[ \frac{1}{2} +
\frac{1}{3} - \frac{1}{n+2} - \frac{1}{n+3} \right] \\
\amp = \frac{1}{2} \left[ \frac{1}{2} + \frac{1}{3}
\right] = \frac{5}{12}
\end{align*}