This is a sine substitution. I calculate the various pieces of the substitution.
\begin{align*}
x \amp = 3 \sin \theta \\
dx \amp = 3 \cos \theta d \theta \\
\sqrt{9-x^2} \amp = \sqrt{9 - 9 \sin^2 \theta} = 3
\sqrt{1-\sin^2 \theta}\\
\amp = 3 \sqrt{\cos^2 \theta} = 3 \cos \theta
\end{align*}
Then I use the pieces to change all the parts of the original integral into \(\theta\text{.}\) I simplify the result first by writing everything in terms of sine and then by split up the fraction and writing everything in the numerator.
\begin{align*}
\int \frac{\sqrt{9-x^2}}{x} dx \amp = \int \frac{3 \cos
\theta}{3 \sin \theta} 3 \cos \theta d \theta \\
\amp = 3 \int \frac{\cos^2 \theta}{\sin \theta} d \theta =
3 \int \frac{1 - \sin^2 \theta}{\sin \theta} d \theta \\
\amp = 3 \int \frac{1}{\sin theta} - \frac{\sin^2
\theta}{\sin \theta} d \theta
= 3 \int \csc \theta d \theta - 3 \int \sin \theta d
\theta
\end{align*}
This is a bit unusual (as I noted in the hint). If I do the correct rearrangements, I don’t actually need any other substitution techniques; I can just use the antiderivatives for \(\sin \theta\) and \(\csc \theta\) from the tables.
\begin{equation*}
3 \int \csc \theta d \theta - 3 \int \sin \theta d \theta =
3 \ln |\csc \theta - \cot \theta| + 3 \cos \theta + c
\end{equation*}
To reverse the substitution, I need to write everything in a form that I can substitute backward. I change the cosecant and cotangent back to sine and cosine. I also multiply and divide by \(3\) in both fractions, since my substitution pieces all have \(3\) in them.
\begin{align*}
\amp = 3 \ln \left| \frac{1}{\sin \theta} - \frac{\cos
\theta}{\sin \theta} \right| + 3 \cos \theta + c \\
\amp = 3 \ln \left| \frac{3}{3 \sin \theta} - \frac{ 3
\cos \theta}{3 \sin \theta} \right| + 3 \cos \theta + c
\end{align*}
Now everything looks like something from the substitution calculations. I reverse the substitution.
\begin{equation*}
\int \frac{\sqrt{9-x^2}}{x} dx = 3 \ln \left| \frac{3 -
\sqrt{9-x^2}}{x} \right| + \sqrt{9-x^2} + c
\end{equation*}