\begin{equation*}
\int \sqrt{1-4x^2} dx
\end{equation*}
This example is close to \(\sqrt{a^2 - x^2}\text{,}\) but there is a coefficient in front of the \(x\text{.}\) I need to remove this to use the trig substitution. I do this by writing \(1\) as \(\frac{4}{4}\) and factoring the \(4\) out of the square root.
\begin{equation*}
\int \sqrt{1-4x^2} dx = \int \sqrt{\frac{4}{4} - 4x^2} dx =
\int \sqrt{4 \left( \frac{1}{4} - x^2 \right)} dx
= \int 2 \sqrt{\frac{1}{4} - x^2} dx
\end{equation*}
Then I can apply the trig substitution \(x = a \sin
\theta\) with \(a = \frac{1}{2}\text{.}\)
\begin{align*}
\text{ Substitution: } \amp\\
\amp x = \frac{1}{2} \sin \theta\\
\amp dx = \frac{1}{2} \cos \theta d \theta\\
\text{ Calculation: } \amp\\
\amp \sqrt{\frac{1}{4} - x^2} = \sqrt{\frac{1}{4} -
\frac{\sin^2 \theta}{4}} = \frac{1}{2} \sqrt{1 - \sin^2
\theta} = \frac{1}{2} \cos \theta
\end{align*}
Putting these pieces in gives me a new integral. Notice that with trig substitution, replacing the \(dx\) term is always easy. I don’t need to any extra algebra to construct the right term; the \(dx\) is always replace by an expression in \(\theta\) according to the table above. After doing the the substitution, I get a trig integral with \(\cos^2 \theta\text{.}\) I use a half-angle identity to do this trig integral, splitting into two reasonable integrals by linearity.
\begin{align*}
\int \sqrt{1-4x^2} dx \amp = 2 \int \frac{1}{2} \cos
\theta \frac{1}{2} \cos \theta d \theta\\
\amp = \frac{1}{2} \int \cos^2 \theta d\theta\\
\amp = \frac{1}{2} \int \frac{1 + \cos 2 \theta}{2}
d\theta\\
\amp = \frac{1}{4} \int d \theta + \int \frac{1}{4} \cos
2 \theta d\theta\\
\amp = \frac{\theta}{4} + \frac{\sin 2\theta}{8} + c
\end{align*}
Now I need to reverse the substitution. This can be a tricky part of trig substitutions. I have expressions from the table for \(\sin \theta\) and \(\cos \theta\text{,}\) so I need to change the result of my integral into those functions. My antiderivative has a \(\sin 2\theta\) term, so I expand that with a double angle identity. Then I can replace the sine and cosine terms. For \(\theta\) by itself, I can invert the substitution \(x = \frac{1}{2} \sin
\theta\) to get \(\theta = \arcsin 2x\) and use that to replace \(\theta\text{.}\)
\begin{align*}
\int \sqrt{1-4x^2} dx \amp = \frac{\theta}{4} + \frac{2
\sin \theta \cos \theta}{8} + c\\
\amp = \frac{\arcsin 2x}{4} + \frac{2 \cdot 2x \cdot
2\sqrt{\frac{1}{4}-x^2}}{8} + c\\
\amp = \frac{\arcsin 2x}{4} + \frac{x\sqrt{1-4x^2}}{2} +
c
\end{align*}