Activity 1.3.1.
Calculate these limits.
- \begin{equation*} \lim_{x \rightarrow 0} \frac{\sin x \sinh x}{x^2} \end{equation*}
- \begin{equation*} \lim_{x \rightarrow 0} x^3 \coth x \end{equation*}
- \begin{equation*} \lim_{x \rightarrow \infty} \frac{\sinh x}{\cosh x} \end{equation*}
Solution.
-
\begin{equation*} \lim_{x \rightarrow 0} \frac{\sin x \sinh x}{x^2} = \lim_{x \rightarrow 0} \frac{\sin x}{x} \frac{\sinh x}{x} = \lim_{x \rightarrow 0} \frac{\sin x}{x} \lim_{x \rightarrow 0} \frac{\sinh x}{x} = 1 \cdot 1= 1\\ \end{equation*}This limit can be split up into two limits. For both \(\sin x\) and \(\sinh x\text{,}\) there are known limits for the ratio with \(x\) near zero.
-
\begin{equation*} \lim_{x \rightarrow 0} x^3 \coth x = \lim_{x \rightarrow 0} \frac{x}{\sinh x} x^2 \cosh x = = \left( \lim_{x \rightarrow 0} \frac{x}{\sinh x} \right) \left( \lim_{x \rightarrow 0} x^2 \right) \left( \lim_{x \rightarrow 0} \cosh x \right)= 1 \cdot 0 \cdot 1 = 0 \end{equation*}By writing hyperbolic cotangent in terms of hyperbolic sine and cosine, this limit can also be split up. Then it uses the known limit for \(\frac{\sinh x}{x}\) and simply evaluate the other two pieces.
-
\begin{equation*} \lim_{x \rightarrow \infty} \frac{\sinh x}{\cosh x} = \lim_{x \rightarrow \infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = 1 \end{equation*}For this limit, I can write the hyperbolics in terms of their exponential defintions and then use asymptotic analysis. I see that the numerator and denominator have the same order and both have leading coefficients \(1\text{.}\) (For limits at infinity, I will almost always rely on exponential definitions of the hyperbolics, either directly on indirectly.)