Skip to main content

Section 4.7 Areas and Volumes

Subsection 4.7.1 Basic Shapes

\begin{align*} \text{Area of Triange} \amp = \frac{1}{2} (\text{base})(\text{height}) = \frac{1}{2}bh \\ \text{Area of Circle} \amp = \pi(\text{radius})^2 = \pi r^2 \\ \text{Volume of Sphere} \amp = \frac{4}{3} \pi (\text{radius})^3 = \frac{4}{3} \pi r^3 \\ \text{Surface Area of Sphere} \amp = 4 \pi (\text{radius})^2 = 4 \pi r^2 \\ \text{Volume of Cylinder} \amp = \pi (\text{radius})^2 (\text{height}) = \pi r^2h \\ \text{Volume of Cone} \amp = \frac{1}{3} \pi (\text{radius})^2 (\text{height}) = \frac{1}{3} \pi r^2h \end{align*}

Subsection 4.7.2 Arclenth Integrals

Let \(f(x)\) be a function \([a,b] \rightarrow \RR\) and let \(\gamma(t) = (x(t),y(t))\) be a parametric curve in \(\RR^2\) for \(t \in [a,b]\text{.}\)
Length of the graph of the function \(f\text{.}\)
\begin{equation*} L = \int_a^b \sqrt{1 + f^\prime(x)^2} dx \end{equation*}
Length of the curve \(\gamma\text{.}\)
\begin{equation*} Li = \int_a^b \sqrt{x^\prime(t)^21 + y^\prime(t)^2} dt \end{equation*}

Subsection 4.7.3 Surface Area Integrals

Let \(f(x)\) be a function \([a,b] \rightarrow \RR\) and let \(\gamma(t) = (x(t),y(t))\) be a parametric curve in \(\RR^2\) for \(t \in [a,b]\text{.}\)
Surface area of surface formed by rotation the graph of \(f\) about the \(x\)-axis.
\begin{equation*} A = \int_a^b 2\pi f(x) \sqrt{1 + f^\prime(x)^2} dx \end{equation*}
Surface area of surface formed by rotation the curve \(\gamma\) about the \(x\)-axis.
\begin{equation*} A = \int_a^b 2\pi y(t) \sqrt{x^\prime(t)^2 + y^\prime(t)^2} dt \end{equation*}
Surface area of surface formed by rotation the graph of \(f\) about the \(y\)-axis.
\begin{equation*} \int_{f^{-1}(a)}^{f^{-1}(b)} 2\pi f^{-1}(y) \sqrt{1 + (f^{-1})^\prime(y)^2} dy \end{equation*}
Surface area of surface formed by rotation the curve \(\gamma\) about the \(y\) -axis.
\begin{equation*} A = \int_a^b 2\pi x(t) \sqrt{x^\prime(t)^2 + y^\prime(t)^2} dt \end{equation*}

Subsection 4.7.4 Volume Integrals

Let \(f(x)\) be a function \([a,b] \rightarrow \RR\) and let \(\gamma(t) = (x(t),y(t))\) be a parametric curve in \(\RR^2\) for \(t \in [a,b]\text{.}\)
Volume of surface formed by rotation the graph of \(f\) about the \(x\)-axis.
\begin{equation*} V = \int_a^b \pi f(x)^2 dx \\[1.5em] \end{equation*}
Volume of surface formed by rotation the curve \(\gamma\) about the \(x\)-axis.
\begin{equation*} V = \int_a^b \pi y(t)^2 y^\prime(t) dt \end{equation*}
Volume of surface formed by rotation the graph of \(f\) about the \(y\)-axis.
\begin{equation*} V = \int_{f^{-1}(a)}^{f^{-1}(b)} \pi f^{-1}(y)^2 dy \end{equation*}
Volume of surface formed by rotation the curve \(\gamma\) about the \(y\)-axis.
\begin{equation*} V = \int_a^b \pi x(t)^2 x^\prime(t) dt \end{equation*}