Skip to main content

Section 5.1 Algebraic Functions

Figure 5.1.1. \(f(x) = 3\)
Function
\(f(x) = 3\)
Name/Type
A constant function.
Domain
\(\RR^2\)
Range
\(\{3\}\)
Symmetry
Even
Boundedness
Bounded above and below
Direction
None
Figure 5.1.2. \(f(x) = x-1\)
Function
\(f(x) = x - 1\)
Name/Type
A linear function
Domain
\(\RR \)
Range
\(\RR \)
Symmetry
None
Boundedness
None
Direction
Increasing
Figure 5.1.3. \(f(x) = \frac{x^2}{2}\)
Function
\(f(x) = \frac{x^2}{2} \)
Name/Type
A quadratic function
Domain
\(\RR \)
Range
\([0,\infty) \)
Symmetry
Even
Boundedness
Bounded below
Direction
None
Figure 5.1.4. \(f(x) = \frac{x^2}{2} - x - \frac{1}{2}\)
Function
\(f(x) = \frac{x^2}{2} - x - \frac{1}{2} \)
Name/Type
A quadratic function
Domain
\(\RR \)
Range
\([-1,\infty)\)
Symmetry
None
Boundedness
Bounded below
Direction
None
Figure 5.1.5. \(f(x) = \frac{x^3}{4}\)
Function
\(f(x) = \frac{x^3}{3} \)
Name/Type
A cubic function
Domain
\(\RR \)
Range
\(\RR \)
Symmetry
Odd
Boundedness
None
Direction
Increasing
Figure 5.1.6. \(f(x) = x^3 - x^2 - x + 1\)
Function
\(f(x) = x^3 - x^2 - x + 1 \)
Name/Type
A cubic function
Domain
\(\RR \)
Range
\(\RR \)
Symmetry
None
Boundedness
None
Direction
None
Figure 5.1.7. \(f(x) = \frac{x^4}{8}\)
Function
\(f(x) = \frac{x^4}{8} \)
Name/Type
A quartic function
Domain
\(\RR \)
Range
\([0,\infty) \)
Symmetry
Even
Boundedness
Bounded below
Direction
None
Figure 5.1.8. \(f(x) = x^4 + x^2 - x^2 - x - 1\)
Function
\(f(x) = x^4 + x^3 - x^2 - x - 1 \)
Name/Type
A quartic function
Domain
\(\RR \)
Range
\([-1.62,\infty)J\) (approximate value)
Symmetry
None
Boundedness
Bounded below
Direction
None
Figure 5.1.9. \(f(x) = \sqrt{x}\)
Function
\(f(x) = \sqrt{x} \)
Name/Type
Domain
\([0,\infty)\)
Range
\([0, \infty)\)
Symmetry
None
Boundedness
Bounded below
Direction
Increasing
Figure 5.1.10. \(f(x) = \frac{1}{3x}\)
Function
\(f(x) = \frac{1}{3x} \)
Name/Type
Domain
\((-\infty, 0) \cup (0, \infty)\)
Range
\((-\infty, 0) \cup (0, \infty)\)
Symmetry
Odd
Boundedness
None
Direction
Decreasing (except over the asymptote jump)
Horizontal Asymptote
\(y = 0\)
Vertical Asymptote
\(x = 0 \)
Figure 5.1.11. \(f(x) = \frac{1}{25x^2}\)
Function
\(f(x) = \frac{1}{25x^2} \)
Name/Type
A rational function
Domain
\((-\infty, 0) \cup (0, \infty)\)
Range
\((-\infty, 0) \cup (0, \infty)\)
Symmetry
Odd
Boundedness
None
Direction
Decreasing (except over the asymptote jump)
Horizontal Asymptote
\(y = 0\)
Vertical Asymptote
\(x = 0 \)
Figure 5.1.12. \(f(x) = \frac{4x^2}{x^2 + 2}\)
Function
\(f(x) = \frac{4x^2}{x^2 + 2}\)
Name/Type
A rational function
Domain
\(\RR\)
Range
\([0,4)\)
Symmetry
Even
Boundedness
Bounded above and below
Direction
None
Horizontal Asymptote
\(y = 4\)
Figure 5.1.13. \(f(x) = \frac{x^2}{x^2-4}\)
Function
\(f(x) = \frac{x^2}{x^2-4} \)
Name/Type
A rational function
Domain
\((-\infty, -2) \cup (-2,2) \cup (2, \infty)\)
Range
\((-infty, 0] \cup [1,\infty)\)
Symmetry
Even
Boundedness
None
Direction
None
Horizontal Asymptote
\(y = 1\)
Horizontal Asymptote
\(2 = -2\) and \(x = 2\)