Skip to main content

Section 5.2 Transcendental Functions

Figure 5.2.1. \(f(x) = \frac{e^x}{3}\)
Function
\(f(x) = \frac{e^x}{3} \)
Name/Type
An exponential function.
Domain
\(\RR\)
Range
\((0, \infty)\)
Symmetry
None
Boundedness
Bounded below
Direction
Increasing
Horizontal Asymptote
\(y = 0\)
Figure 5.2.2. \(f(x) = 3e^{-x^2} \)
Function
\(f(x) = 3e^{-x^2} \)
Name/Type
An exponential function
Domain
\(\RR\)
Range
\((0, \infty)\)
Symmetry
None
Boundedness
Bounded below
Direction
Decreasing
Horizontal Asymptote
\(y = 0\)
Figure 5.2.3. \(f(x) = \ln x\)
Function
\(f(x) = \ln x \)
Name/Type
A logarithmic funciton
Domain
\((0, \infty)\)
Range
\(\RR\)
Symmetry
None
Boundedness
None
Direction
Increasing
Vertical Asymptote
\(x = 0\)
Figure 5.2.4. \(f(x) = \sin x \)
Function
\(f(x) = \sin x\)
Name/Type
A trigonometric function
Domain
\(\RR \)
Range
\([-1,1] \)
Symmetry
Odd
Boundedness
Bounded above and below
Direction
None
Figure 5.2.5. \(f(x) = \cos x\)
Function
\(f(x) = \cos x\)
Name/Type
A trigonometric function
Domain
\(\RR \)
Range
\([-1,1] \)
Symmetry
Even
Boundedness
Bounded above and below
Direction
Non
Figure 5.2.6. \(f(x) = \tan x\)
Function
\(f(x) = \tan x\)
Name/Type
A trigonometric function
Domain
\(\RR\text{,}\) except odd multiple of \(\frac{\pi}{2}\text{.}\)
Range
\(\RR \)
Symmetry
Odd
Boundedness
None
Direction
None
Figure 5.2.7. \(f(x) = \cosh x\)
Function
\(f(x) = \cosh x \)
Name/Type
A hyperbolic function
Domain
\(\RR\)
Range
\([1,\infty)\)
Symmetry
Even
Boundedness
Bounded below
Direction
None
Figure 5.2.8. \(f(x) = \sinh x\)
Function
\(f(x) = \sinh x\)
Name/Type
A hyperbolic function
Domain
\(\RR\)
Range
\(\RR\)
Symmetry
Odd
Boundedness
None
Direction
Increasing
Figure 5.2.9. \(f(x) = \tanh x\)
Function
\(f(x) = \tanh x\)
Name/Type
A hyperbolic function
Domain
\(\RR\)
Range
\((-1,1)\)
Symmetry
Odd
Boundedness
Bounded above and below
Direction
Increasing
Horizontal Asymptotes
\(y = -1\) and \(y = 1\)
Figure 5.2.10. \(f(x) = \arcsin x\)
Function
\(f(x) = \arcsin x\)
Name/Type
An inverse trigonometric function
Domain
\([-1,1]\)
Range
\(\left[ \frac{-\pi}{2}, \frac{\pi}{2} \right]\)
Symmetry
Odd
Boundedness
Bounded above and below
Direction
Increasing
Figure 5.2.11. \(f(x) = \arccos x\)
Function
\(f(x) = \arccos x\)
Name/Type
An inverse trigonometric function
Domain
\([-1,1]\)
Range
\([0,\pi]\)
Symmetry
None
Boundedness
Bounded above and below
Direction
Decreasing
Figure 5.2.12. \(f(x) = \arctan x\)
Function
\(f(x) = \arctan x\)
Name/Type
An inverse trigonometric function
Domain
\(\RR\)
Range
\(\left( \frac{\pi}{2}, \frac{\pi}{2} \right)\)
Symmetry
Odd
Boundedness
Bounded abobe and below
Direction
Increasing
Horizontal Asymptote
\(y = \frac{-\pi}{2}\) and \(y = \frac{\pi}{2}\)
Figure 5.2.13. \(f(x) = \arccosh x\)
Function
\(f(x) = \arccosh x \)
Name/Type
An inverse hyperbolic function
Domain
\([1,\infty)\)
Range
\([0,\infty)\)
Symmetry
None
Boundedness
Bounded below
Direction
Increasing
Figure 5.2.14. \(f(x) = \arcsinh x\)
Function
\(f(x) = \arcsinh x\)
Name/Type
An inverse hyperbolic function
Domain
\(\RR\)
Range
\(\RR\)
Symmetry
Odd
Boundedness
None
Direction
Increasing
Figure 5.2.15. \(f(x) = \arctanh x\)
Function
\(f(x) = \arctanh x\)
Name/Type
An inverse hyperbolic function
Domain
\((-1,1)\)
Range
\(\RR\)
Symmetry
Odd
Boundedness
None
Direction
Increasing
Vertical Asymptotes
\(x = 1\) and \(x = -1\)