Skip to main content

Section 4.1 Algebra

Subsection 4.1.1 Factoring

\begin{align*} x^2 - y^2 \amp = (x-y)(x+y) \\ x^3 - y^3 \amp = (x-y)(x^2 + xy + y^2) \\ x^3 + y^3 \amp = (x+y)(x^2 - xy + y^2) \end{align*}

Subsection 4.1.2 Expanding

\begin{align*} (x+y)^2 \amp = x^2 + 2xy + y^2 \\ (x+y)^3 \amp = x^3 + 3x^2y + 3xy^2 + y^3 \end{align*}

Subsection 4.1.3 Binomial Theorem

\begin{align*} n! \amp = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot (n-1) \cdot n \\ (x+y)^n \amp = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} \\ \binom{n}{k} \amp = \frac{n!}{k!(n-k)!} \\ (x-y)^n \amp = \sum_{k=0}^n (-1)^k \binom{n}{k} x^k y^{n-k} \end{align*}

Subsection 4.1.4 Exponents

\begin{align*} a^xa^y \amp = a^{x+y} \\ \frac{a^x}{a^y} \amp = a^{x-y} \\ (a^x)^y \amp = a^{xy} \\ a^{-x} \amp = \frac{1}{a^x} \\ (ab)^x \amp = a^x b^x \\ \left( \frac{a}{b} \right)^x \amp = \frac{a^x}{b^x} \\ a^{\frac{x}{y}} \amp = \sqrt[y]{a^x} \end{align*}

Subsection 4.1.5 Logarithms

\begin{align*} \log_a (xy) \amp = \log_a x + \log_a b\\ \log_a \left( \frac{x}{y} \right) \amp = \log_a x - \log_a y \\ \log_a (x^b) \amp = b\ \log_a x \\ \ln x \amp = \log_e x\\ \log_a x \amp = \frac{\ln x}{\ln a} \\ e \amp = 2.71828\ldots \\ e \amp = \displaystyle \lim_{n \rightarrow \infty} \left( 1 + \frac{1}{n} \right)^n \end{align*}

Subsection 4.1.6 Quadratics

If
\begin{equation*} ax^2+bx+c \end{equation*}
is a general quadratic, then the roots are given by the quadratic formula.
\begin{equation*} x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \end{equation*}
The discriminant of the quadratic is the value \(b^2-4ac\text{.}\) A quadratic is called irreducible if the discriminant if negative. This means that the quadratic has no roots in the real numbers.