Skip to main content
Reference Materials for Mathematics
Remkes Kooistra
x
Search Results:
No results.
☰
Contents
You!
Choose avatar
▻
✔️
You!
😺
👤
👽
🐶
🐼
🌈
Font family
▻
✔️
Open Sans
AaBbCc 123 PreTeXt
Roboto Serif
AaBbCc 123 PreTeXt
Adjust font
▻
Size
12
Smaller
Larger
Width
100
narrower
wider
Weight
400
thinner
heavier
Letter spacing
0
/200
closer
f a r t h e r
Word spacing
0
/50
smaller gap
larger gap
Line Spacing
135
/100
closer
together
further
apart
Light/dark mode
▻
✔️
default
pastel
twilight
dark
midnight
Reading ruler
▻
✔️
none
underline
L-underline
grey bar
light box
sunrise
sunrise underline
Motion by:
✔️
follow the mouse
up/down arrows - not yet
eye tracking - not yet
<
Prev
^
Up
Next
>
🔍
\(\def\vs{{\it vs. }} \def\cf{{\it cf. }} \def\viz{{\it viz. }} \def\ie{{\it i.e. }} \def\etc{{\it etc. }} \def\eg{{\it e.g. }} \def\etal{{\it et al .}} \def\via{{\it via }} \def\adhoc{{\it ad hoc }} \def\apriori{{\it apriori }} \def\Afrak{\mathfrak{A}} \def\Bfrak{\mathfrak{B}} \def\Cfrak{\mathfrak{C}} \def\Dfrak{\mathfrak{D}} \def\Efrak{\mathfrak{E}} \def\Ffrak{\mathfrak{F}} \def\Gfrak{\mathfrak{G}} \def\Hfrak{\mathfrak{H}} \def\Ifrak{\mathfrak{I}} \def\Jfrak{\mathfrak{J}} \def\Kfrak{\mathfrak{K}} \def\Lfrak{\mathfrak{L}} \def\Mfrak{\mathfrak{M}} \def\Nfrak{\mathfrak{N}} \def\Ofrak{\mathfrak{O}} \def\Pfrak{\mathfrak{P}} \def\Qfrak{\mathfrak{Q}} \def\Rfrak{\mathfrak{R}} \def\Sfrak{\mathfrak{S}} \def\Tfrak{\mathfrak{T}} \def\Ufrak{\mathfrak{U}} \def\Vfrak{\mathfrak{V}} \def\Wfrak{\mathfrak{W}} \def\Xfrak{\mathfrak{X}} \def\Yfrak{\mathfrak{Y}} \def\Zfrak{\mathfrak{Z}} \def\afrak{\mathfrak{a}} \def\bfrak{\mathfrak{b}} \def\cfrak{\mathfrak{c}} \def\dfrak{\mathfrak{d}} \def\efrak{\mathfrak{e}} \def\ffrak{\mathfrak{f}} \def\gfrak{\mathfrak{g}} \def\hfrak{\mathfrak{h}} \def\ifrak{\mathfrak{i}} \def\jfrak{\mathfrak{j}} \def\kfrak{\mathfrak{k}} \def\lfrak{\mathfrak{l}} \def\mfrak{\mathfrak{m}} \def\nfrak{\mathfrak{n}} \def\ofrak{\mathfrak{o}} \def\pfrak{\mathfrak{p}} \def\qfrak{\mathfrak{q}} \def\rfrak{\mathfrak{r}} \def\sfrak{\mathfrak{s}} \def\tfrak{\mathfrak{t}} \def\ufrak{\mathfrak{u}} \def\vfrak{\mathfrak{v}} \def\wfrak{\mathfrak{w}} \def\xfrak{\mathfrak{x}} \def\yfrak{\mathfrak{y}} \def\zfrak{\mathfrak{z}} \def\AA{\mathbb{A}} \def\BB{\mathbb{B}} \def\CC{\mathbb{C}} \def\DD{\mathbb{D}} \def\EE{\mathbb{E}} \def\FF{\mathbb{F}} \def\GG{\mathbb{G}} \def\HH{\mathbb{H}} \def\II{\mathbb{I}} \def\JJ{\mathbb{J}} \def\KK{\mathbb{K}} \def\LL{\mathbb{L}} \def\MM{\mathbb{M}} \def\NN{\mathbb{N}} \def\OO{\mathbb{O}} \def\PP{\mathbb{P}} \def\QQ{\mathbb{Q}} \def\RR{\mathbb{R}} \def\SS{\mathbb{S}} \def\TT{\mathbb{T}} \def\UU{\mathbb{U}} \def\VV{\mathbb{V}} \def\WW{\mathbb{W}} \def\XX{\mathbb{X}} \def\YY{\mathbb{Y}} \def\ZZ{\mathbb{Z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\Ap{A^\prime} \def\Bp{B^\prime} \def\Cp{C^\prime} \def\Dp{D^\prime} \def\Ep{E^\prime} \def\Fp{F^\prime} \def\Gp{G^\prime} \def\Hp{H^\prime} \def\Ip{I^\prime} \def\Jp{J^\prime} \def\Kp{K^\prime} \def\Lp{L^\prime} \def\Mp{M^\prime} \def\Mp{N^\prime} \def\Op{O^\prime} \def\Pp{P^\prime} \def\Qp{Q^\prime} \def\Rp{R^\prime} \def\Sp{S^\prime} \def\Tp{T^\prime} \def\Up{U^\prime} \def\Vp{V^\prime} \def\Wp{W^\prime} \def\Xp{X^\prime} \def\Yp{Y^\prime} \def\Zp{Z^\prime} \def\ap{a^\prime} \def\bp{b^\prime} \def\cp{c^\prime} \def\dprime{d^\prime} \def\ep{e^\prime} \def\fp{f^\prime} \def\gp{g^\prime} \def\hp{h^\prime} \def\ip{i^\prime} \def\jp{j^\prime} \def\kp{k^\prime} \def\lp{l^\prime} \def\mp{m^\prime} \def\np{n^\prime} \def\op{o^\prime} \def\pp{p^\prime} \def\qp{q^\prime} \def\rp{r^\prime} \def\sp{s^\prime} \def\tp{t^\prime} \def\up{u^\prime} \def\vp{v^\prime} \def\wp{w^\prime} \def\xp{x^\prime} \def\yp{y^\prime} \def\zp{z^\prime} \def\App{A^{\prime\prime}} \def\Bpp{B^{\prime\prime}} \def\Cpp{C^{\prime\prime}} \def\Dpp{D^{\prime\prime}} \def\Epp{E^{\prime\prime}} \def\Fpp{F^{\prime\prime}} \def\Gpp{G^{\prime\prime}} \def\Hpp{H^{\prime\prime}} \def\Ipp{I^{\prime\prime}} \def\Jpp{J^{\prime\prime}} \def\Kpp{K^{\prime\prime}} \def\Lpp{L^{\prime\prime}} \def\Mpp{M^{\prime\prime}} \def\Mpp{N^{\prime\prime}} \def\Opp{O^{\prime\prime}} \def\Ppp{P^{\prime\prime}} \def\Qpp{Q^{\prime\prime}} \def\Rpp{R^{\prime\prime}} \def\Spp{S^{\prime\prime}} \def\Tpp{T^{\prime\prime}} \def\Upp{U^{\prime\prime}} \def\Vpp{V^{\prime\prime}} \def\Wpp{W^{\prime\prime}} \def\Xpp{X^{\prime\prime}} \def\Ypp{Y^{\prime\prime}} \def\Zpp{Z^{\prime\prime}} \def\app{a^{\prime\prime}} \def\bpp{b^{\prime\prime}} \def\cpp{c^{\prime\prime}} \def\dpp{d^{\prime\prime}} \def\epp{e^{\prime\prime}} \def\fpp{f^{\prime\prime}} \def\gpp{g^{\prime\prime}} \def\hpp{h^{\prime\prime}} \def\ipp{i^{\prime\prime}} \def\jpp{j^{\prime\prime}} \def\kpp{k^{\prime\prime}} \def\lpp{l^{\prime\prime}} \def\mpp{m^{\prime\prime}} \def\npp{n^{\prime\prime}} \def\opp{o^{\prime\prime}} \def\ppp{p^{\prime\prime}} \def\qpp{q^{\prime\prime}} \def\rpp{r^{\prime\prime}} \def\spp{s^{\prime\prime}} \def\tpp{t^{\prime\prime}} \def\upp{u^{\prime\prime}} \def\vpp{v^{\prime\prime}} \def\wpp{w^{\prime\prime}} \def\xpp{x^{\prime\prime}} \def\ypp{y^{\prime\prime}} \def\zpp{z^{\prime\prime}} \def\abar{\overline{a}} \def\bbar{\overline{b}} \def\cbar{\overline{c}} \def\dbar{\overline{d}} \def\ebar{\overline{e}} \def\fbar{\overline{f}} \def\gbar{\overline{g}} \def\ibar{\overline{i}} \def\jbar{\overline{j}} \def\kbar{\overline{k}} \def\lbar{\overline{l}} \def\mbar{\overline{m}} \def\nbar{\overline{n}} \def\obar{\overline{o}} \def\pbar{\overline{p}} \def\qbar{\overline{q}} \def\rbar{\overline{r}} \def\sbar{\overline{s}} \def\tbar{\overline{t}} \def\ubar{\overline{u}} \def\vbar{\overline{v}} \def\wbar{\overline{w}} \def\xbar{\overline{x}} \def\ybar{\overline{y}} \def\zbar{\overline{z}} \def\Abar{\overline{A}} \def\Bbar{\overline{B}} \def\Cbar{\overline{C}} \def\Dbar{\overline{D}} \def\Ebar{\overline{E}} \def\Fbar{\overline{F}} \def\Gbar{\overline{G}} \def\Hbar{\overline{H}} \def\Ibar{\overline{I}} \def\Jbar{\overline{J}} \def\Kbar{\overline{K}} \def\Lbar{\overline{L}} \def\Mbar{\overline{M}} \def\Nbar{\overline{N}} \def\Obar{\overline{O}} \def\Pbar{\overline{P}} \def\Qbar{\overline{Q}} \def\Rbar{\overline{R}} \def\Sbar{\overline{S}} \def\Tbar{\overline{T}} \def\Ubar{\overline{U}} \def\Vbar{\overline{V}} \def\Wbar{\overline{W}} \def\Xbar{\overline{X}} \def\Ybar{\overline{Y}} \def\Zbar{\overline{Z}} \def\aunder{\underline{a}} \def\bunder{\underline{b}} \def\cunder{\underline{c}} \def\dunder{\underline{d}} \def\eunder{\underline{e}} \def\funder{\underline{f}} \def\gunder{\underline{g}} \def\hunder{\underline{h}} \def\iunder{\underline{i}} \def\junder{\underline{j}} \def\kunder{\underline{k}} \def\lunder{\underline{l}} \def\munder{\underline{m}} \def\nunder{\underline{n}} \def\ounder{\underline{o}} \def\punder{\underline{p}} \def\qunder{\underline{q}} \def\runder{\underline{r}} \def\sunder{\underline{s}} \def\tunder{\underline{t}} \def\uunder{\underline{u}} \def\vunder{\underline{v}} \def\wunder{\underline{w}} \def\xunder{\underline{x}} \def\yunder{\underline{y}} \def\zunder{\underline{z}} \def\Aunder{\underline{A}} \def\atilde{\widetilde{a}} \def\btilde{\widetilde{b}} \def\ctilde{\widetilde{c}} \def\dtilde{\widetilde{d}} \def\etilde{\widetilde{e}} \def\ftilde{\widetilde{f}} \def\gtilde{\widetilde{g}} \def\htilde{\widetilde{h}} \def\itilde{\widetilde{i}} \def\jtilde{\widetilde{j}} \def\ktilde{\widetilde{k}} \def\ltilde{\widetilde{l}} \def\mtilde{\widetilde{m}} \def\ntilde{\widetilde{n}} \def\otilde{\widetilde{o}} \def\ptilde{\widetilde{p}} \def\qtilde{\widetilde{q}} \def\rtilde{\widetilde{r}} \def\stilde{\widetilde{s}} \def\ttilde{\widetilde{t}} \def\utilde{\widetilde{u}} \def\vtilde{\widetilde{v}} \def\wtilde{\widetilde{w}} \def\xtilde{\widetilde{x}} \def\ytilde{\widetilde{y}} \def\ztilde{\widetilde{z}} \def\Atilde{\widetilde{A}} \def\Btilde{\widetilde{B}} \def\Ctilde{\widetilde{C}} \def\Dtilde{\widetilde{D}} \def\Etilde{\widetilde{E}} \def\Ftilde{\widetilde{F}} \def\Gtilde{\widetilde{G}} \def\Htilde{\widetilde{H}} \def\Itilde{\widetilde{I}} \def\Jtilde{\widetilde{J}} \def\Ktilde{\widetilde{K}} \def\Ltilde{\widetilde{L}} \def\Mtilde{\widetilde{M}} \def\Ntilde{\widetilde{N}} \def\Otilde{\widetilde{O}} \def\Ptilde{\widetilde{P}} \def\Qtilde{\widetilde{Q}} \def\Rtilde{\widetilde{R}} \def\Stilde{\widetilde{S}} \def\Ttilde{\widetilde{T}} \def\Utilde{\widetilde{U}} \def\Vtilde{\widetilde{V}} \def\Wtilde{\widetilde{W}} \def\Xtilde{\widetilde{X}} \def\Ytilde{\widetilde{Y}} \def\Ztilde{\widetilde{Z}} \def\Alphatilde{\widetilde{\Alpha}} \def\Betatilde{\widetilde{\Beta}} \def\Gammatilde{\widetilde{\Gamma}} \def\Deltatilde{\widetilde{\Delta}} \def\Epsilontilde{\widetilde{\Epsilon}} \def\Zetatilde{\widetilde{\Zeta}} \def\Etatilde{\widetilde{\Eta}} \def\Thetatilde{\widetilde{\Theta}} \def\Iotatilde{\widetilde{\Iota}} \def\Kappatilde{\widetilde{\Kappa}} \def\Lambdatilde{\widetilde{\Lamdba}} \def\Mutilde{\widetilde{\Mu}} \def\Nutilde{\widetilde{\Nu}} \def\Xitilde{\widetilde{\Xi}} \def\Omicrontilde{\widetilde{\Omicron}} \def\Pitilde{\widetilde{\Pi}} \def\Rhotilde{\widetilde{\Rho}} \def\Sigmatilde{\widetilde{\Sigma}} \def\Tautilde{\widetilde{\Tau}} \def\Upsilontilde{\widetilde{\Upsilon}} \def\Phitilde{\widetilde{\Phi}} \def\Chitilde{\widetilde{\Chi}} \def\Psitilde{\widetilde{\Psi}} \def\Omegatilde{\widetilde{\Omega}} \def\alphatilde{\widetilde{\alpha}} \def\betatilde{\widetilde{\beta}} \def\gammatilde{\widetilde{\gamma}} \def\deltatilde{\widetilde{\delta}} \def\epsilontilde{\widetilde{\epsilon}} \def\zetatilde{\widetilde{\zeta}} \def\etatilde{\widetilde{\eta}} \def\thetatilde{\widetilde{\theta}} \def\iotatilde{\widetilde{\iota}} \def\kappatilde{\widetilde{\kappa}} \def\lambdatilde{\widetilde{\lamdba}} \def\mutilde{\widetilde{\mu}} \def\nutilde{\widetilde{\nu}} \def\xitilde{\widetilde{\xi}} \def\omicrontilde{\widetilde{\omicron}} \def\pitilde{\widetilde{\pi}} \def\rhotilde{\widetilde{\rho}} \def\sigmatilde{\widetilde{\sigma}} \def\tautilde{\widetilde{\tau}} \def\upsilontilde{\widetilde{\upsilon}} \def\phitilde{\widetilde{\phi}} \def\chitilde{\widetilde{\chi}} \def\psitilde{\widetilde{\psi}} \def\omegatilde{\widetilde{\omega}} \def\Alphabar{\bar{\Alpha}} \def\Betabar{\bar{\Beta}} \def\Gammabar{\bar{\Gamma}} \def\Deltabar{\bar{\Delta}} \def\Epsilonbar{\bar{\Epsilon}} \def\Zetabar{\bar{\Zeta}} \def\Etabar{\bar{\Eta}} \def\Thetabar{\bar{\Theta}} \def\Iotabar{\bar{\Iota}} \def\Kappabar{\bar{\Kappa}} \def\Lambdabar{\bar{\Lamdba}} \def\Mubar{\bar{\Mu}} \def\Nubar{\bar{\Nu}} \def\Xibar{\bar{\Xi}} \def\Omicronbar{\bar{\Omicron}} \def\Pibar{\bar{\Pi}} \def\Rhobar{\bar{\Rho}} \def\Sigmabar{\bar{\Sigma}} \def\Taubar{\bar{\Tau}} \def\Upsilonbar{\bar{\Upsilon}} \def\Phibar{\bar{\Phi}} \def\Chibar{\bar{\Chi}} \def\Psibar{\bar{\Psi}} \def\Omegabar{\bar{\Omega}} \def\alphabar{\bar{\alpha}} \def\betabar{\bar{\beta}} \def\gammabar{\bar{\gamma}} \def\deltabar{\bar{\delta}} \def\epsilonbar{\bar{\epsilon}} \def\zetabar{\bar{\zeta}} \def\etabar{\bar{\eta}} \def\thetabar{\bar{\theta}} \def\iotabar{\bar{\iota}} \def\kappabar{\bar{\kappa}} \def\lambdabar{\bar{\lamdba}} \def\mubar{\bar{\mu}} \def\nubar{\bar{\nu}} \def\xibar{\bar{\xi}} \def\omicronbar{\bar{\omicron}} \def\pibar{\bar{\pi}} \def\rhobar{\bar{\rho}} \def\sigmabar{\bar{\sigma}} \def\taubar{\bar{\tau}} \def\upsilonbar{\bar{\upsilon}} \def\phibar{\bar{\phi}} \def\chibar{\bar{\chi}} \def\psibar{\bar{\psi}} \def\omegabar{\bar{\omega}} \def\del{\partial} \def\delbar{\overline{\partial}} \def\Cech{\check{C}} \def\half{\frac{1}{2}} \def\defeq{\mathrel{\mathop:}=} \def\alg{\mathrm{alg}} \def\Alt{\mathrm{Alt}} \def\Amp{\mathrm{Amp}} \def\Arg{\mathrm{Arg}} \def\an{\mathrm{an}} \def\anti{\mathrm{anti}} \def\Ap{\mathrm{Ap}} \def\arcsinh{\mathrm{arcsinh\hspace{0.07cm}}} \def\arccosh{\mathrm{arccosh\hspace{0.07cm}}} \def\arctanh{\mathrm{arctanh\hspace{0.07cm}}} \def\arccsch{\mathrm{arccsch\hspace{0.07cm}}} \def\arcsech{\mathrm{arcsech\hspace{0.07cm}}} \def\arccoth{\mathrm{arccoth\hspace{0.07cm}}} \def\arccsc{\mathrm{arccsc\hspace{0.07cm}}} \def\arcsec{\mathrm{arcsec\hspace{0.07cm}}} \def\arccot{\mathrm{arccot\hspace{0.07cm}}} \def\arg{\mathrm{arg}} \def\BC{\mathrm{BC}} \def\Bel{\mathrm{Bel}} \def\calCH{\mathcal{CH}} \def\csch{\mathrm{csch}\hspace{0.07cm}} \def\CH{\mathrm{CH}} \def\ch{\mathrm{ch}} \def\closed{\mathrm{closed}} \def\codim{\mathrm{codim}} \def\coth{\mathrm{coth}\hspace{0.07cm}} \def\Coh{\mathfrak{Coh}} \def\Coker{\mathrm{Coker}} \def\Cone{\mathrm{Cone}} \def\darg{d\mathrm{arg}} \def\Db{\mathrm{Db}} \def\dclosed{\mathrm{d-closed}} \def\deg{\mathrm{deg}} \def\dim{\mathrm{dim}} \def\divisor{\mathrm{div}} \def\dlog{d\mathrm{log}} \def\DNE{\mathrm{DNE}} \def\DR{\mathrm{DR}} \def\DST{\mathrm{DST}} \def\exp{\mathrm{exp}} \def\FLB{\mathrm{FLB}} \def\FLS{\mathrm{FLS}} \def\Gr{\mathrm{Gr}} \def\Hzar{H_{\mathrm{Zar}}} \def\Hol{\mathrm{Hol}} \def\Id{\mathrm{Id}} \def\Image{\mathrm{Im}} \def\Ka{\mathcal{K}_A} \def\Ker{\mathrm{Ker}} \def\kod{\mathrm{kod}} \def\Kx{\mathcal{K}_X} \def\Kz{\mathcal{K}_Z} \def\log{\mathrm{log}} \def\Log{\mathrm{Log}} \def\Li{\mathrm{Li}} \def\min{\mathrm{min}} \def\Mon{\mathrm{Mon}} \def\Nef{\mathrm{Nef}} \def\NS{\mathrm{NS}} \def\Oa{\mathcal{O}_A} \def\Ox{\mathcal{O}_X} \def\Oz{\mathcal{O}_Z} \def\Perp{\mathrm{Perp}} \def\Pic{\mathrm{Pic}} \def\Proj{\mathrm{Proj}} \def\rank{\mathrm{rank}} \def\Rat{\mathrm{Rat}} \def\Real{\mathrm{Re}} \def\reg{\mathrm{reg}} \def\Res{\mathrm{Res}} \def\res{\mathrm{res}} \def\Ric{\mathrm{Ric}} \def\sech{\mathrm{sech}\hspace{0.07cm}} \def\Span{\mathrm{Span}} \def\Spec{\mathrm{Spec}} \def\sing{\mathrm{sing}} \def\Singx{\mathrm{Sing}(X)} \def\sheafKer{\mathcal{\Ker}} \def\sheafIm{\mathcal{\Im}} \def\Span{\mathrm{Span}} \def\Spin{\mathrm{Spin}} \def\Str{\mathrm{Str}} \def\td{\mathrm{td}} \def\tr{\mathrm{tr}} \def\Todd{\mathrm{Todd}} \def\tor{\mathrm{tor}} \def\trdeg{\mathrm{trdeg}} \def\Zar{\mathrm{Zar}} \def\ZFLS{\mathrm{ZFLS}} \usepackage{tikz} \usepackage{tkz-graph} \usepackage{tkz-euclide} \usetikzlibrary{patterns} \usetikzlibrary{positioning} \usetikzlibrary{matrix,arrows} \usetikzlibrary{calc} \usetikzlibrary{shapes} \usetikzlibrary{through,intersections,decorations,shadows,fadings} \usepackage{pgfplots} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9} \newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}} \)
Front Matter
1
Academic Honesty in Mathematics Courses
1.1
General University Policy
1.2
Submitted Mathematical Work
1.3
Internet Resources
1.4
Exams
2
How to Write a Math Assignment
2.1
Academing Writing in Mathematics
2.2
Examples
3
Mathematical Notations
4
Reference
4.1
Algebra
4.1.1
Factoring
4.1.2
Expanding
4.1.3
Binomial Theorem
4.1.4
Exponents
4.1.5
Logarithms
4.1.6
Quadratics
4.2
Trigonometry
4.2.1
Trigonometric Functions
4.2.2
Unit Circle
4.2.3
Squares
4.2.4
Symmetry
4.2.5
Shifts
4.2.6
Additions
4.2.7
Subtractions
4.2.8
Double Angles
4.2.9
Half Angles
4.2.10
Sum to Product
4.2.11
Product to Sum
4.2.12
Sine Law
4.2.13
Cosine Law
4.2.14
Superposition
4.2.15
Inverse Trigonometric Functions
4.3
Hyperbolics
4.3.1
Definitions
4.3.2
Basic Identities
4.3.3
Additions
4.3.4
Subtractions
4.3.5
Double Angles
4.3.6
Half Angles
4.3.7
Inverse Hyperbolic Functions
4.4
Derivatives
4.4.1
Two Important Limits
4.4.2
Definition of the Derivative
4.4.3
Power Rule
4.4.4
Linearity
4.4.5
Product Rule
4.4.6
Quotient Rule
4.4.7
Chain Rule
4.4.8
Derivatives of Inverse Functions
4.4.9
Common Derivatives
4.5
Sums
4.5.1
Manipulations
4.5.2
Useful Sums
4.6
Integrals
4.6.1
Integration Rules
4.6.2
Fundamental Theorem of Calculus
4.6.3
Integration by Parts
4.6.4
Trigonometric Substitutions
4.6.5
Integrals Used in Partial Fractions
4.6.6
Common Indefinite Integrals
4.7
Areas and Volumes
4.7.1
Basic Shapes
4.7.2
Arclenth Integrals
4.7.3
Surface Area Integrals
4.7.4
Volume Integrals
4.8
Series
4.8.1
Geometric Series and
\(\zeta\)
Series
4.8.2
Taylor Series
4.8.3
Calculus of Taylor Series
4.8.4
Common McLaurin Series
4.9
Laplace Transforms
4.9.1
Definitions
4.9.2
Rules
4.9.3
Some Common Laplace Transforms
4.10
\(\epsilon\)
-
\(\delta\)
Definitions
4.11
Theorems
5
Library of Functions
5.1
Algebraic Functions
5.2
Transcendental Functions
Backmatter
Colophon
Colophon
This book was authored in PreTeXt.