This example is already a separable equation, so I don’t really need the technique of substitution. However is it a nice, relatively easy example to show how this kind of substitution works.
\begin{align*}
\frac{dy}{dt} \amp = \frac{t}{y}\\
v \amp = \frac{y}{t}\\
f(v) \amp = \frac{1}{v}\\
\frac{dv}{dt} \amp = \frac{\frac{1}{v} - v}{t}
\end{align*}
This is the new seperable equation. I’ll solve it in the conventional method.
\begin{align*}
\int \frac{v}{1-v^2} dv \amp = \ln |t| + c\\
\frac{-1}{2} \ln |1-v^2| \amp = \ln |t| + C\\
\frac{1}{\sqrt{1-v^2}} \amp = ct\\
\sqrt{1-v^2} \amp = \frac{c}{t}\\
1-v^2 \amp = \frac{c}{t^2}\\
v^2 \amp = 1 - \frac{c}{t^2}\\
v \amp = \pm \sqrt{ 1 - \frac{c}{t^2}}
\end{align*}
After solving the separable equation, now I reverse the substitution and try to solve for the original function \(y\text{.}\)
\begin{align*}
\frac{y}{t} \amp = \pm \sqrt{ 1 - \frac{c}{t^2}}\\
y \amp = \pm t \sqrt{1 - \frac{c}{t^2}} = \pm \sqrt{t^2
- c}
\end{align*}