Now I’ll add a forcing term to the general harmonic form, again assuming that \(b^2 - 4acm \lt 0\text{.}\) Since I can take a Laplace transform of a \(\delta\)-function, we’ll use that for the forcing term. \(F\delta_0(t)\) is a sudden impact with force \(F\) (in appropriate units) at time \(t\text{.}\) I’ll use initial values of \(y(0) = y^\prime(0) = 0\text{,}\) so that the system is initially at rest and the only motion is due to the sudden impact. I apply the Laplace transform to the differential equation.
\begin{align*}
my^{\prime \prime} + by^\prime + ky \amp = F \delta_0(t)\\
\calL \{ my^{\prime \prime} + by^\prime + ky \} \amp =
\calL \{ F \delta_0(t) \}\\
m (s^2 Y - s y(0) - y^\prime(0)) + b(sY - y(0)) + kY \amp
= F\\
(ms^2 + bs + k) Y \amp = F
\end{align*}
This is now an algebraic equation, so I solve for \(Y\text{.}\)
\begin{align*}
Y \amp = \frac{F}{ms^2 + bs + k}\\
Y \amp = \frac{\frac{F}{m}}{s^2 + \frac{b}{m}s +
\frac{k}{m}}\\
Y \amp = \frac{\frac{F}{m}}{\left( s^2 + \frac{bs}{m} +
\frac{b^2}{4m^2} \right) + \left( \frac{k}{m} -
\frac{b^2}{4m^2} \right) }\\
Y \amp = \frac{\frac{F}{m}}{\left( s^2 + \frac{bs}{m} +
\frac{b^2}{4m^2} \right) + \left( \frac{4km - b^2}{4m^2}
\right) }
\end{align*}
This looks like something that will transform back to an expoentially decaying sine function, since there is a constant in the numerator. I’ll adjust the constants to get a matching constant for the inverse transform.
\begin{align*}
Y \amp = \frac{F}{m} \frac{2m}{\sqrt{4km-b^2}}
\frac{\frac{\sqrt{4km-b^2}}{2m}}{\left( s + \frac{b}{2m}
\right)^2 + \left( \frac{4km - b^2}{4m^2} \right) }
\end{align*}
Now I apply the inverse transform that produces an exponentially decaying sine function, using \(\alpha =
\frac{b}{2m}\) and \(\beta = \frac{\sqrt{4km -
b^2}}{2m}\text{.}\)
\begin{align*}
y(t) \amp = \frac{2m}{4km-b^2} \frac{F}{m}
e^{\frac{-b}{2m}t} \sin \left( \frac{\sqrt{4km-b^2}}{2m}t
\right)\\
y(t) \amp = \frac{2F}{4km-b^2} e^{\frac{-b}{2m}t} \sin
\left( \frac{\sqrt{4km-b^2}}{2m}t \right)
\end{align*}
This seems reasonable. The sudden impact causes a sine wave to start, which then decays. I could ask: what changes if I move the impact to a later time? If the impact is at \(t=4\text{,}\) then the forcing term is \(\delta_4(t)\text{.}\) I again proceed with the Laplace transform.
\begin{align*}
my^{\prime \prime} + by^\prime + ky \amp = F \delta_4(t)\\
\calL \{ my^{\prime \prime} + by^\prime + ky \} \amp =
\calL \{ F \delta_0(t) e^{-4s}\}\\
m (s^2 Y - s y(0) - y^\prime(0)) + b(sY - y(0)) + kY \amp
= F e^{-4s}\\
(ms^2 + bs + k) Y \amp = F e^{-4s}
\end{align*}
This is now an algebraic equation, so I solve for \(Y\text{.}\)
\begin{align*}
Y \amp = \frac{Fe^{-4s}}{ms^2 + bs + k}\\
Y \amp = \frac{\frac{Fe^{-4s}}{m}}{s^2 + \frac{b}{m}s +
\frac{k}{m}}\\
Y \amp = e^{-4s} \frac{\frac{F}{m}}{\left( s^2 +
\frac{bs}{m} + \frac{b^2}{4m^2} \right) + \left(
\frac{k}{m} - \frac{b^2}{4m^2} \right) }\\
Y \amp = e^{-4s} \frac{F}{m} \frac{2m}{\sqrt{4km-b^2}}
\frac{\frac{\sqrt{4km-b^2}}{2m}}{\left( s + \frac{b}{2m}
\right)^2 + \left( \frac{4km - b^2}{4m^2} \right) }
\end{align*}
This is identitcal to the previous inverse transform except for multiplication by \(e^{-4s}\text{.}\) I can use the rules for shifts; multiplication by an exponential in the \(s\) domain is a shift in the \(t\) domain. I take the result from the previous calculation, shift it, and multipy by a unit step function.
\begin{align*}
y(t) \amp = u_4(t) \frac{2m}{4km-b^2} \frac{F}{m}
e^{\frac{-b}{2m}(t-4)} \sin \left(
\frac{\sqrt{4km-b^2}}{2m} (t-4) \right)\\
y(t) \amp = u_4(t) \frac{2F}{4km-b^2} e^{\frac{-b}{2m}
(t-4) } \sin \left( \frac{\sqrt{4km-b^2}}{2m} (t-4)
\right)
\end{align*}
The result is the same sine wave, just shifted \(4\) units to the right. This makes sense: the sine wave doesn’t start until after the sudden impact.