Activity 5.10.1.
Solve this DE using Laplace transforms.
\begin{align*}
y^{\prime \prime} + 4y^\prime + 4y \amp = \sin (3t)\\
y(0) \amp = 0\\
y^\prime (0) \amp = 0
\end{align*}
Solution.
First I apply the Laplace transform, produce an algebraic equation for \(Y\) and solve for \(Y\text{.}\)
\begin{align*}
\calL \left\{ y^{\prime \prime} + 4y^\prime + 4y \right\}
\amp = \calL \left\{ \sin(3t) \right\} \\
(s^2Y - sy(0) - y^\prime(0)) + 4(sY - y(0)) + 4Y \amp =
\frac{3}{s^2 + 9} \\
(s^2 + 4s + 4)Y \amp = \frac{3}{s^2 + 9} \\
Y \amp = \frac{3}{(s^2+9)(s+2)^2}
\end{align*}
I use partial fractions to split up the rational function.
\begin{align*}
Y \amp = \frac{-3}{169} \frac{4s+5}{s^2+9} +
\frac{12}{169} \frac{1}{s+2} + \frac{3}{13}
\frac{1}{(s+2)^2}
\end{align*}
I need to split up the first fractions into two forms that fit the inverse Laplace transform.
\begin{align*}
Y \amp = \frac{-12}{169} \frac{s}{s^2+9} +
\frac{-5}{169} \frac{3}{s^2+9} + \frac{12}{169}
\frac{1}{s+2} + \frac{3}{13} \frac{1}{(s+2)^2}
\end{align*}
I apply the inverse Laplace transform.
\begin{align*}
\calL^{-1} \{Y\} \amp = \calL^{-1} \left\{
\frac{-12}{169} \frac{s}{s^2+9} + \frac{-5}{169}
\frac{3}{s^2+9} + \frac{12}{169} \frac{1}{s+2} +
\frac{3}{13} \frac{1}{(s+2)^2} \right\}\\
y \amp = \frac{-12}{169} \cos 3t - \frac{5}{169} \sin
(3t) + \frac{12}{169} e^{-2t} + \frac{3}{13} te^{-2t}
\end{align*}