Skip to main content

Section 5.9 More Examples of Solving DEs with Laplace Transforms

Example 5.9.1.

Consider a slightly different version of the square wave.
\begin{equation*} f(t) = \left\{ \begin{matrix} 1 \amp t \in [2n, 2n+1) \\ -1 \amp t \in [2n+1, 2n+2) \end{matrix} \right. \end{equation*}
Using initial conditions \(y(0) = y^\prime(0)= 0\) I solve the equation \(y^{\prime \prime} + y = f(t)\text{.}\)
\begin{align*} (s^2+1)Y \amp = \frac{1}{1-e^{-2s}} \int_0^2 e^{-st} f(t) dt\\ \amp = \frac{1}{1-e^{-2s}} \left[ \int_0^1 e^{-st} dt - \int_1^2 e^{-st} dt \right]\\ \amp = \frac{1}{1-e^{-2s}} \left[ \left. \frac{e^{-st}}{-s} \right|_0^1 + \left. \frac{e^{-st}}{s} \right|_1^2 \right]\\ (s^2 + 1) Y \amp = \frac{1}{1-e^{2s}} \left[ \frac{-e^{-s}}{s} + \frac{1}{s} + \frac{e^{-2s}}{s} - \frac{e^{-s}}{s} \right] \end{align*}
After solving the integral and simplifying the result, I get an algebraic equation in \(Y\text{.}\) I solve for \(Y\text{.}\) Then I use partial fractions to split up the rational function and geometric series to expand the term with an exponential decay in the denominator.
\begin{align*} Y \amp = \frac{1-2s^{-s} + e^{-2s}}{s(s^2+1)} \frac{1}{1-e^{-2s}}\\ \amp = \frac{1}{s(s^2+1)} (1-2e^{-s} + e^{-2s}) ( 1 - e^{-2s} + e^{-4s} - e^{-6s} + e^{-8s} - \ldots )\\ \amp = \left( \frac{-s}{s^2+1} + \frac{1}{s} \right) (1 - 2e^{-s} + 2e^{-3s} - 2e^{-5s} + 2e^{-7s} - \ldots ) \end{align*}
Then I apply the inverse transform and simplify it into a single sum.
\begin{align*} y \amp = 1 - \cos t - 2u_1(t) (1-\cos(t-1)) + 2u_3(t) (1-\cos(t-3))\\ \amp - 2u_5 (t) (1-\cos(t-5)) + 2 u_7(t) (1 - \cos (t-7) ) - \ldots\\ \amp = 1 - \cos t + 2\sum_{k=0}^\infty (-1)^{k+1} u_{2k+1} (t) (1 - \cos(t-(2k+1))) \end{align*}
As with the previous square wave solution in Example 5.7.4, this solution involves an infinite series of shifts, each one slightly further along. Unusual periodic functions almost always lead to an infinite series of shifts.

Example 5.9.2.

This examples involves a step function. To transform a step function, I need something like \(u_a(t) f(t-a)\text{.}\) In this equation, I want to adjust the forcing term to fit this pattern, so that the transform is clear. I do this by adding and subtracting \(2u_2(t)\) and factoring to fit the pattern.
\begin{align*} y^{\prime \prime} + 6y^\prime + 5y \amp = t - tu_2(t)\\ y(0) \amp = 1 \\ y^\prime(0) \amp = 0\\ y^{\prime \prime} + 6y^\prime + 5y \amp = t - (t-2) u_2(t) + 2 u_2(t) \\ s^2 Y - s + 6sY - 6 + 5Y \amp = \frac{1}{s^2} - e^{-2s} \frac{1}{s^2} + 2\frac{e^{-2s}}{s} \end{align*}
This is an algebraic equation. I’ll solve for \(Y\text{.}\) Along the way, I’ll factor the quadratic on the left and expand the terms on the right.
\begin{align*} (s+5)(s+1) Y \amp = \frac{1}{s^2} - \frac{e^{-2s}}{s^2} - \frac{2e^{-2s}}{s} + s + 6 \\ Y \amp = \frac{1}{s^2(s+1)(s+5)} - \frac{e^{-2s}}{s^2(s+1)(s+5)} - \frac{2e^{-2s}}{s(s+1)(s+5)} \\ \amp + \frac{s}{(s+5)(s+1)} + \frac{6}{(s+5)(s+1)} \end{align*}
I have five rational functions, some of which also have an exponential (which will eventually turn into a shift). I need partial fractions for all five rational functions. I’ll to straight to the result.
\begin{align*} \amp = \frac{1}{5s^2} + \frac{1}{4(s+1)} - \frac{1}{100(s+5)} - \frac{6}{25s} - \frac{e^{-2s}}{5s^2} - \frac{e^{-2s}}{4(s+1)} + \frac{e^{-2s}}{100(s+5)} \\ \amp + \frac{6e^{-2s}}{25s} - \frac{e^{-2s}}{2(s+1)} + \frac{e^{-2s}}{10(s+5)} + \frac{2e^{-2s}}{5s} + \frac{5}{4(s+5)} - \frac{1}{4(s+1)}\\ \amp - \frac{3}{2(s+1)} + \frac{3}{2(s+5)} \end{align*}
Before doing the inverse transform, I’ll gather like terms to save some work and boil down the expression a bit.
\begin{align*} Y \amp = \frac{1}{5s^2} - \frac{6}{25s} + \frac{3}{20(s+1)} + \left( \frac{-1}{100} + \frac{5}{4} + \frac{3}{2} \right) \frac{1}{s+5} \\ \amp + e^{-2s} \left( \frac{1}{5s^2} + \left( \frac{6}{25} + \frac{2}{5} \right) \frac{1}{s} + \left( \frac{-1}{4} - \frac{1}{2} \right) \frac{1}{s+1} + \left(\frac{1}{100} + \frac{1}{10} \right) \frac{1}{s+5} \right) \\ \amp = \frac{1}{5s^2} - \frac{6}{25s} - \frac{3}{2(s+1)} + \frac{137}{50(s+5)} \\ \amp + e^{-2s} \left( \frac{1}{5s^2} + \frac{16}{25s} - \frac{3}{4(s+1)} + \frac{11}{100(s+5)} \right) \end{align*}
Now I apply the inverse transform, using the exponentials as shifts. After the inverse transform, I can make at least one small simplification, but the result is still pretty complicated.
\begin{align*} y \amp = \frac{t}{5} - \frac{6}{25} - \frac{3e^{-t}}{2} + \frac{137e^{-5t}}{50} + u_2(t) \left[ \frac{(t-2)}{5} + \frac{16}{25} - \frac{3e^{2-t}}{4} + \frac{11e^{10-5t}}{100} \right] \\ y \amp = \frac{t}{5} - \frac{6}{25} - \frac{3e^{-t}}{2} + \frac{137e^{-5t}}{50} + u_2(t) \left[ \frac{t}{5} + \frac{6}{25} - \frac{3e^{2-t}}{4} + \frac{11e^{10-5t}}{100} \right] \end{align*}

Example 5.9.3.

This example uses two \(\delta\)-functions, representing two sudden impacts.
\begin{align*} y^{\prime \prime} - 7y^\prime + 6y \amp = e^t + \delta_2(t) + \delta_4(t) \\ y(0) \amp = y^\prime(0) = 0\\ s^2 Y - 7sY + 6Y \amp = \frac{1}{s-1} + e^{-2s} + e^{-4s} \end{align*}
This is an algebraic function, so I solve for \(Y\text{.}\) I’ll get a function of rational functions, which I split up with partial fractions.
\begin{align*} Y \amp = \frac{1}{(s-1)(s-6)(s-1)} + \frac{e^{-2s}}{(s-6)(s-1)} + \frac{e^{-4s}}{(s-6)(s-1)}\\ \amp = \frac{-1}{25(s-1)} - \frac{1}{5(s-1)^2} + \frac{1}{25(s-6)} \\ \amp + e^{-2t} \left( \frac{1}{5(s-6)} - \frac{1}{5(s-1)} \right) \\ \amp + e^{-4t} \left( \frac{1}{5(s-6)} - \frac{1}{5(s-1)} \right) \end{align*}
Then I apply the inverse transform.
\begin{align*} y \amp = \frac{e^{-t}}{25} - \frac{1}{2} \calL^{-1} \left\{ \frac{d}{dt} \frac{-1}{s-1} \right\} + \frac{1}{25} e^{6t} \\ \amp \frac{u_2(t)}{5} \left( e^{6(t-2)}- e^{t-2} \right) + \frac{u_4(t)}{5} \left( e^{6(t-4)}- e^{t-4} \right) \\ y \amp = \frac{e^{-t}}{25} - \frac{te^t}{5} + \frac{1}{25} e^{6t} \\ \amp \frac{u_2(t)}{5} \left( e^{6t-12}- e^{t-2} \right) + \frac{u_4(t)}{5} \left( e^{6t-24}- e^{t-4} \right) \end{align*}

Example 5.9.4.

This is a ridiculous example with infinitely many \(\delta\)-functions, representing a new impact at every unit of time. I can treat this forcing sum as a periodic function and use that structure (with period 1) to get the transform.
\begin{align*} f(t) \amp = \sum_{n=0}^\infty \delta_n (t) \\ y^{\prime \prime} + 3 y^\prime + 2y \amp = f(t)\\ y(0) \amp = y^\prime(0) = 0\\ s^2 Y + 3sY + 2Y \amp = \frac{1}{1-e^{-s}} \int_0^1 e^{-st} \delta_0 (t) dt = \frac{1}{1-e^{-s}} \end{align*}
After solving the integral, this is an algebraic equation. I solve for \(Y\text{,}\) apply partial fractions to the rational function, and use a geometric series to expand the term with an exponential in the denominator.
\begin{align*} Y \amp = \frac{1}{1-e^{-s}} \frac{1}{(s+2)(s+1)} \amp \amp\\ Y \amp = \left( \frac{1}{s+1} - \frac{1}{s+2} \right) \left( 1 _ e^{-s} + e^{-2s} + e^{-3s} + e^{-4s} + \ldots \right) \amp \amp \end{align*}
Then I apply the inverse transform, group term and try to write the result as a single sum.
\begin{align*} y \amp = e^{-t} - e^{-2t} + u_1(t) \left( e^{-(t-1)} - e^{-(2t-2)} \right) + u_2(t) \left( e^{-(t-2)} - e^{-(2t-4)} \right) \amp \amp\\ \amp + u_3(t) \left( e^{-(t-3)} - e^{-(2t-6)} \right) + u_4(t) \left( e^{-(t-4)} - e^{-(2t-8)} \right) \amp \amp\\ y \amp = e^{-t} - e^{-2t} + u_1(t) \left( e^{1-t} - e^{2-2t} \right) + u_2(t) \left( e^{2-t} - e^{4-2t} \right) \amp \amp\\ \amp + u_3(t) \left( e^{3-t} - e^{6-2t} \right) + u_4(t) \left( e^{4-t} - e^{8-2t} \right) \amp \amp\\ \amp = \sum_{k=0}^\infty u_k(t) \left( e^{k-t} - e^{2(k-t)} \right) \amp \amp \end{align*}
This is an interesting superposition of decay functions. They all have the same shape with a slightly higher peak. Adding them all up gives something which slowly rises higher and higher, while still trying to decay. Eventually the system does grow beyond any bounds, even with all the decay functions.