Activity 6.4.1.
Calculate this derivative by definition.
\begin{equation*}
\frac{d}{dx} (x^2-4)
\end{equation*}
Solution.
I use the limit definition of the derivative.
\begin{equation*}
\frac{d}{dx} (x^2-4) = \lim_{h \rightarrow 0}
\frac{(x+h)^2 - 4 - (x^2-4)}{h}
\end{equation*}
Then I simplify this expression, trying to find a way to factor an \(h\) from the numerator so that I can cancel it with the \(h\) from the denominator.
\begin{align*}
\lim_{h \rightarrow 0} \frac{(x+h)^2 - 4 - (x^2-4)}{h}
\amp = \lim_{h \rightarrow 0} \frac{x^2 + 2xh + h^2 - 4 -
x^2 + 4}{h} \\
\amp = \lim_{h \rightarrow 0} \frac{2xh + h^2}{h} \\
\amp = \lim_{h \rightarrow 0} \frac{h(2x + h)}{h} \\
\amp = \lim_{h \rightarrow 0} 2x + h = 2x+0 = 2x
\end{align*}
Therefore, the derivative is \(2x\text{.}\)