\begin{equation*}
\lim_{x \rightarrow 1} x \left( \frac{x^2-1}{x-1} -
\frac{3}{x-4} \right)
\end{equation*}
This limit has various pieces combined together with arithmetic. I can use the limit rules to split it up. First, I’ll split up the product.
\begin{equation*}
= \left( \lim_{x \rightarrow 1} x\right) \lim_{x
\rightarrow 1} \left( \frac{x^2-1}{x-1} -
\frac{3}{x-4} \right)
\end{equation*}
Then the first limit evaluates to \(1\text{.}\) I’ll use the limit rules again to split up the difference in the second limit.
\begin{equation*}
= 1 \left( \lim_{x \rightarrow 1} \frac{x^2-1}{x-1} -
\lim_{x \rightarrow 1} \frac{3}{x-4} \right)
\end{equation*}
The second limit can be directly evaluated. The first limit needs some work, so I factor its numerator.
\begin{equation*}
= \left( \lim_{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1} -
\frac{3}{-3} \right)
\end{equation*}
Then I can cancel the \((x-1)\) term in the remaining limit.
\begin{equation*}
= \lim_{x \rightarrow 1} (x + 1) + 1
\end{equation*}
Finally, I can now evaluate the remaining limit and finish the whole problem.
\begin{equation*}
= 2 + 1 = 3
\end{equation*}