This example is a clever and tricky use of integration by parts to deal with an important but difficult types of integral. Let
\(a,b \in \RR\) with
\(a,b \neq 0\text{.}\) In the following integral, I am going to use integration by parts twice in a row.
\begin{align*}
\int e^{ax} \sin bx dx \amp\\
\frac{df}{dx} \amp = e^{ax} \implies f = \frac{e^{ax}}{a}\\
g \amp = \sin bx \implies \frac{dg}{dx} = b \cos bx\\
\int e^{ax} \sin bx dx \amp = \frac{e^{ax} \sin bx}{a}
- \int \frac{b}{a} e^{ax} \cos bx dx\\
\frac{df}{dx} \amp = e^{ax} \implies f = \frac{e^{ax}}{a}\\
g \amp = \cos bx \implies \frac{dg}{dx} = -b \sin bx\\
\amp = \frac{e^{ax}\sin bx}{a} - \frac{b}{a} \left(
\frac{e^{ax} \cos bx}{a} - \int \frac{b}{a} e^{ax}
(-\sin bx) dx \right)\\
\int e^{ax} \sin bx dx \amp
= \frac{e^{ax}\sin bx}{a} - \frac{be^{ax} \cos
bx}{a^2} - \frac{b^2}{a^2} \int e^{ax} \sin bx dx
\end{align*}
What have I accomplished? Iβve done integration by parts twice, but all Iβve done is returned back to the original integral. This seems like a dead end, but I can actually solve the integral from this equation. Iβll add whole last term on the right from both sides of the equation, to cancel it from the right and add it to the left.
\begin{equation*}
\int e^{ax} \sin bx dx - \frac{b^2}{a^2} \int e^{ax} \sin
bx dx = \frac{e^{ax}\sin bx}{a} - \frac{be^{ax} \cos
bx}{a^2}
\end{equation*}
Now Iβll rewrite the left side, factoring out the common integral term from both pieces. After doing that, I can divide by the resulting non-integral term.
\begin{align*}
\left( 1 + \frac{b^2}{a^2} \right) \int e^{ax} \sin bx
dx \amp = \frac{ae^{ax} \sin b x - b e^{ax} \cos
bx}{a^2}\\
\int e^{ax} \sin bx dx \amp = \frac{\frac{ae^{ax} \sin
b x - b e^{ax} \cos bx}{a^2}}{\frac{a^2+b^2}{a^2}}\\
\int e^{ax} \sin bx dx \amp = \frac{ae^{ax} \sin b x -
b e^{ax} \cos bx}{a^2+b^2}
\end{align*}
The result is an expression for the antiderivative of this difficult function.