There are some regular arrangements of the alternating harmonic which have specific values. Let
\(A(m,n)\) be the sum formed by adding
\(m\) positive terms followed by
\(n\) negative terms and repeating this pattern. (As before, the positive and negative terms are taken in decreasing order.) It can be proved that this converges to certain values of the logarithm.
\begin{equation*}
A(m,n) = \ln 2 + \frac{1}{2} \ln \left( \frac{m}{n} \right)\text{.}
\end{equation*}
In particular, the combination of one positive and four negative terms sums to zero.
\begin{align*}
A(1,4) \amp = \ln 2 + \frac{1}{2} \ln \frac{1}{4} = \ln
2 + \ln \left( \frac{1}{4} \right)^{\frac{1}{2}} = \ln 2
+ \ln \frac{1}{2} = \ln 2 - \ln 2 = 0\\
0 \amp = 1 - \frac{1}{2} - \frac{1}{4} - \frac{1}{6} -
\frac{1}{8}\\
\amp \hspace{0.5cm} + \frac{1}{3} - \frac{1}{10} -
\frac{1}{12} - \frac{1}{14} - \frac{1}{16}\\
\amp \hspace{0.5cm} + \frac{1}{5} - \frac{1}{18} -
\frac{1}{20} - \frac{1}{22} - \frac{1}{24}\\
\amp \hspace{0.5cm} + \frac{1}{7} - \frac{1}{26} -
\frac{1}{28} - \frac{1}{30} - \frac{1}{32}\\
\amp \hspace{0.5cm} + \frac{1}{9} - \frac{1}{34} -
\frac{1}{36} - \frac{1}{38} - \frac{1}{40} \ldots
\end{align*}