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These examples cover the high-school level technical skills needed to succeed in the study of calculus.

To help emphasize the techniques, we’ll be very explicit in these notes with comments on each step in
each solution, indicating why we chose to take a certain action.

When working problems yourself, we encourage you to be more explicit and careful in writing up solu-
tions, even to simple problems. Many difficulties are solved just by showing more steps and organizing
your work.
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1 Algebra

These examples cover polynomials and rational expressions (one polynomial divided by another). The
techniques of understanding polynomals and working with fractions are central.

The main strategies when working with polynomials and rational expressions are:

• Factoring

• Expanding

• Taking sums/differences of fractions to common denominator

• Simplifying nested fractions

• Finding roots of polynomials

• Using the quadratic formula

1.1 Quadratics

We’ll start with solving some exaples of quadratic equations. In each of the following, we’re solving for
the variable x.

1.1.1 Example

x2 − 10x + 25 = 0

This is a quadratic. First we try to factor. We want to find a and b with ab = 25 and a + b = −10.
a = −5 and b = −5 satisfy, so the quadratic factors as:

(x− 5)(x− 5) = 0

The equation is solved if either factor is 0.

x− 5 = 0 or x− 5 = 0

x = 5
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1.1.2 Example

3x2 − 9x− 30 = 0

This is also a quadratic. I’ll try to factor it, but first we notice that all three coefficients are divisible
by 3. I’ll factor the 3 out first.

3(x2 − 3x− 10) = 0

To simplify, I’ll divide both side of the equation by 3.

x2 − 3x− 10 = 0

Now we factor. We want a and b with ab = −10 and a + b = −3. a = −5 and b = 2 satisfy.

(x− 5)(x + 2) = 0

The equation holds if either factor is 0.

x = 5 or x = −2

1.1.3 Example

x2 − 25 = 0

There are several ways to approach this. First, we add 25 to both sides of the equation.

x2 = 25

Then we take square-roots of both sides. We need to remember that the square root can be positive
or negative.

x = ±
√

25 = ±5

x = 5 or x = −5

Alternatively, we could recognize that the original x2 − 25 is a different of squares x2 − 52, which is a
special form of the quadratic. It factors as:

(x− 5)(x + 5) = 0

This leads to the same values.

x = 5 or x = −5
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1.1.4 Example

2x2 + 5x + 17 = 0

We can factor out the 2 to see if the quadratic will factor.

2

(
x2 +

5

2
x +

17

2

)
= 0

A factoring would need ab = 17
2 and a + b = 5

2 . No obvious choices occur, so we use the quadratic
formula instead. To work with easier numbers, we use the original coifficients.

x =
−b±

√
b2 − 4ac

2a

x =
−5±

√
25− 8 · 17

4

x =
−5±

√
−111

4

Since there is a negative square root, there are no solutions.

1.1.5 Example

4x2 + 16x + 2 = 0

We try to factor our the 4 to see if the quadratic factors nicely.

4

(
x2 + 4 +

1

2

)
= 0

We need ab = 1
2 and a + b = 4. No immediate solutions occur, so we use the quadratic formula.

x =
−b±

√
b2 − 4ac

2a

x =
−16±

√
(16)2 − 4 · 4 · 2
4 · 2

=
−16±

√
256− 32

8
=
−16±

√
224

8

Though this is a final solution, we often want to factor out terms to find a simplier form. We can factor
224 as 16 · 14, and take the 16 out of the square root as 4 to get:

x =
−16± 4

√
14

8
=
−4±

√
14

2

x = −2 +

√
14

2
or − 2−

√
14

2
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1.2 Higher Degree Polynomials

Quadratics are well understood through factoring and using the quadratic formula. However, we often
need to deal with higher order polynomials, where the work can get more difficult.

Looking at cubics, there are three approaches. First, there are two special forms, differences and sums
of cubes, which factor easily. Second, cubics always have at least one real root, so we often try to
guess one root to reduce to a quadratic. Third, there is a cubic equation, like the quadratic equation.
However, it is quite complicated and we rarely rely on it.

Here are some cubic examples. We are asked to solve the following equations for x.

1.2.1 Example

x3 − 27 = 0

27 is 3 cubed, so this is a difference of cubes. We use the difference of cubes form from reference
materials.

(x− 3)(x2 + 3x + 9) = 0

The first term gives x = 3 as a root, and the second is a quadratic. It doesn’t factor nicely, so we use
the quadratic formula.

x =
−3±

√
33 − 4 · 9
2

=
−3±

√
−27

4

The square root is negative, so there are no roots. Therefore, x = 3 is the only soution.

1.2.2 Example

x3 + 64 = 0

64 is 43, so this is a sum of cubes. We use the sum of cubes form.

(x + 4)(x2 − 4x + 16) = 0

The first term gives x = −4 as a solution. The second term is a quadratic, for which we use the
quadratic formula

x =
4±
√

16− 64

2
=

4±
√
−48

2

The square root is negative, so there are no roots. Therefore, x = −4 is the only solution to the original
cubic.
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1.2.3 Example

x3 + 2x2 − 9x + 2 = 0

This is not a specific form, but we can try to guess a real root. Trying small integers, we find that
x = 2 satisfies. That means that (x− 2) must be a factor. Therefore the equation has the form:

(x− 2)(ax2 + bx + c) = 0

To find the coefficients a, b and c, we multiply out to recover the original. That means that a must be
1, to get the right cubic term. Then b must be 4 to get the right quadratic term. Finally, c must be −1
to get the right linear term.

(x− 2)(x2 + 4x− 1) = 0

We have one root x = 2. The remaining piece is a quadratic, and we use the quadratic formula since
it doesn’t obviously factor.

x =
−4±

√
42 + 4

2
=
−4±

√
12

2
= −2±

√
3

Notice in the last step, we factored a factor of 2 out of numerator and denominator. That came out of
the square root terms as a factor of 4. This gives us the final two roots, for three total solutions.

x = 2 or x = −2 +
√

3 or x = −2−
√

3

1.2.4 Example

x3 + 4x2 − 47x− 210 = 0

This is not a special form, so we can try to make some guesses. Guessing small integers is a little more
computationally difficult here, but we can find that x = −5 is a solution. We factor off (x = 5) to get:

(x + 5)(x2 − x− 42) = 0

The x2−x−42 term was found in the same way as the previous example, where we find the coefficients
of the quadratic piece by multiplying out and matching with the original. This quadratic factors nicely:

(x + 5)(x + 6)(x− 7) = 0

x = −5 or x = −6 or x = 7
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1.2.5 Example

x3 + 7x2 − 3x− 2 = 0

This is not a special form. Also, no reasonably small integer guesses help. The only recourse is using
the formula. We’re not even going to work that out, but a computer approximation gives the following
approximate roots, to two decimal places:

x = 0.74 or x = −0.37 or x = −7.37

The last example makes the point that already for cubics, exact solutions are difficult to find and
approximate solutions are sometime the best we can manage.

The situation just gets more difficult with higher degree polynomials. It becomes more and more
difficult to factor and find roots directly. For degree 4, there is a formula to find roots, but it takes
several pages to write out. For degree 5 and higher, no formula exists and approximation methods are
the only methods remaining.

1.3 Rational Expressions

A rational expression is a fraction where the numerator and denominator are both polynomials. We
often want to solve equations with these as well, and we’ll give some examples here of the techniques
involed.

With rational expressions, we have to be very careful we don’t divide by 0. Any solution which leads
to 0 in the denominator of the original equation is an invalid solution.

Here are some equations involving rational expressions:

1.3.1 Example

x2 + 4x− 2

x2 − 3x + 7
= 1

To get rid of the fraction, we multiply both sides of the equation by x2 − 3x + 7.

x2 + 4x− 2 = 1(x2 − 3x + 7) = x2 − 3x + 7

Then we want all the terms on one side of the equation. Subtract x2 from both sides of the equation.

4x− 2 = −3x + 7

We subtract −3x + 7 from both sides.

7x− 9 = 0

x =
9

7

We have a potential solution, but we have to check for division by 0. This x in the original equation
gives a denominator of 49 which is not zero, so this is a valid solution.
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1.3.2 Example

x2 − 4x + 3

x2 + 3x− 4
= 3

Instead of worrying about it later, we can check the denominator at the start. Here the denominator
factors as (x − 1)(x + 4). Therefore, x = 1 and x = −4 lead to 0 in the denominator, and are invalid
solutions. As long as we avoid these values, we will have valid solutions.

x2 − 4x + 3 = 3(x2 + 3x− 4) = 3x2 + 9x− 12

We subtract the terms on the right-hand-side from both sides of the equation.

−2x2 − 13x + 15 = 0

This is now a recognizable quadratic, which we solve with the quadratic formula.

x =
13±

√
132 − 8 · 15

−4
=
−13±

√
49

4
=
−13± 7

4

x = −5 or
−3

2

Many times we have to manipulate rational expressions that are expressed as several different fractions.
The key adjustment here is using common denominator with variable expressions.

1.3.3 Example

1

x + 2
− 1

2x− 2
= 4

We must find a common denoninator. There are no common factors in x+1 and 2x−2, so the common
denominator must be (x + 1)(2x− 1).

(2x− 2)− (x + 1)

(x + 1)(2x− 2)
= 4

x− 3

(x + 1)(2x− 2)
= 4

x− 3 = 4(x + 1)(2x− 2) = 8x2 − 8

We group all terms on one side of the equation, by subtracting terms as necessary from both sides.

−8x2 + x + 7 = 0

Now use the quadratic formula.

x =
−1±

√
197

16

x =
−1 +

√
197

16
or x =

−1−
√

197

16

Neither of these answers are x = −2 or x = 1 which lead to 0 denominators, so these are valid solutions.

8



1.3.4 Example

x + 2

x− 2
+

x− 3

x + 1
= 2

We must use the common denominator (x + 1)(x− 2).

(x + 1)(x + 2) + (x− 3)(x− 2)

(x− 1)(x− 2)
= 2

We simplify the expressions, and multiply by the denominator to clear the fraction.

x2 + 3x + 2 + x2 − 5x + 6 = 2(x2 − x− 2) = 2x2 − 2x− 4

2x2 − 2x + 8 = 2x2 − 2x− 4

We subtract 2x2 − 2x from both sides of the equation.

8 = −4

We are left with an impossible statement, so there must be no solutions to the original equation.

1.4 Isolating variables

In the following set of examples, instead of solving a single variable equation, we will be isolating one
of a number of variables. Often equations are presented to us in this form, and we want to isolate the
variable we are most interested in. There are no new methods in this section, just a new setting for
the same kind of algebraic manipulations. Be warned, however; these types of questions can be very
difficult or impossible, depending on the original situation.

1.4.1 Example: Isolate the variable b:

3a + b

a2
+

a

b + a
=

4

a

First we note that a 6= 0 and b 6= −a, so that we don’t divide by zero. Then we move to a common
denominator

(3a + b)(b + a) + a3

a2b + a3
=

4

a
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We can multiply both sides of the equation by a and then ab + a2 to cancel off the denominators.

3a2 + 4ab + b2 + a3

ab + a2
= 4

a3 + 3a2 + 4ab + b2 = 4(ab + a2) = 4ab + 4a2

We can subtraction 4ab from both sides of the equation.

a3 + 3a2 + b2 = 4a2

Next we group like variables on either side of the equation, isolating b2 since we want to isolate b.

b2 = a2 − a3

b = ±
√
a2 − a3

1.4.2 Example: Isolate the variable a:

1

a
+

1

b
+

1

ab
= 1

We go to the common denominator of ab.

b + a + 1

ab
= 1

We multiply both sides by ab to clear the denominator.

a + b + 1 = ab

We want to isolate a, so we group all the terms with a on the left hand side by adding and subtracting
terms from both sides.

a− ab = −b− 1

a(1− b) = −b− 1

a =
−b− 1

1− b
=

b + 1

b− 1

1.4.3 Example: Isolate the variable Q:

(This one is very tricky. It is included to show how to think about applying the same techniques as
before in more and more complicated situations.)

(
P +

Q

S

)(
P 2 − S2

)
=

1

Q
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Multiply both sides by Q.

Q

(
P +

Q

S

)(
P 2 − S2

)
= 1

Expand the multiplication on the left hand side.(
QP +

Q2

S

)
(P 2 − S2) = 1

QP 3 +
Q2P 2

S
−QPS2 −Q2S = 1

To simplify a little, lets clear the denominators by multpliying everything on both sides by S.

QSP 3 + Q2P 2 −QPS3 −Q2S2 = S

We group terms with respect to degree of Q, since that’s the variable we wish to isolate. We also bring
the S over to the left hand side.

(P 2 − S2)Q2 + (P 3S − PS3)Q− S = 0

Though strange to look at, this is a quadratic in Q with a = P 2−S2, b = P 3S−PS3 and c = −1. We
can use the quadratic formula to get the following complicated solution.

Q =
PS3 − P 3S ±

√
(P 3S − PS3)2 − 4(P 2 − S2)S

4(P 2 − S2)

We could try to simplify further, but this is a valid solution. We don’t know whether this quadratic
has real roots without giving values for P and S.

11


	Algebra
	Quadratics
	Higher Degree Polynomials
	Rational Expressions
	Isolating variables


