## Problem Set 27: Optimization

Key skills: Optimization

## Practice Problems

1. If there is a square prism with height, width $h$ and length 1 m , determine the maximum volume of the prism if the surface area is $1 \mathrm{~m}^{2}$.
2. The area of an ellipse with semi-axes $a$ and $b$ is $\pi a b$. Find the maximum area under the constraint $a+b=1$. Then find the maximum area under the constraint $a^{2}+b^{2}=1$.
3. Two circles have centres which are exactly 1 m apart. The circles touch each other but do not overlap. What is the minimum of the sum of the areas of the two circles in this situation? (Hint: The radii do not have to be the same!)

## Answers

1. Surface area is $2 h^{2}+4 h l=1$. We solve for $l$ and subsitute into the volume formula $V=h^{2} l$. This gives

$$
V=\frac{h-2 h^{3}}{4} \quad V^{\prime}(h)=\frac{1}{4}-\frac{6 h^{2}}{4}
$$

Solving for the critical points gives $h=\frac{1}{\sqrt{6}}$. We check that this is a maximum by seeing that the sign of the derivative changes from positive to negative. Then $l=\frac{1}{\sqrt{6}}$ as well, and we conclude that the cube has the maximum volume.
2. Process in both parts is the same as the previous question, using the constraint to remove a variable, and using the first derivative and critical points to find the maximum. The maximum area for the first part is $\pi / 4$, and for the second part is $\pi / 2$.
3. If $r_{1}$ and $r_{2}$ are the two radii, then the areas are $\pi r_{1}^{2}$ and $\pi r_{2}^{2}$ with the restriction that $r_{1}+r_{2}=1$. Therefore $r_{2}=1-r_{1}$. The total area is

$$
A=\pi r_{1}^{2}+\pi\left(1-r_{1}\right)^{2}=\pi\left(1-2 r_{1}+2 r_{1}^{2}\right)
$$

If we take the derivative and optimize, we find a local minimum at $r_{1}=\frac{1}{2}$. Therefore, the total area is minimized when both radii are $1 / 2$ and the minimum sum of the areas of both circles is $\pi / 2$ units squared.

