## Problem Set 19: Linear Approximation

Key skills: Tangent Lines as approximations of functions

## Practice Problems

Write the linear approximation (tangent line) of the given function at the given points. Use it to calculate nearby values. If you have a computer to give approximate values, compare the results from your approximation to what your computer gives.
(a) The function $f(x)=\sin x$ near the points $(0,0)$ and $(\pi, 0)$.
(b) The function $f(x)=\cos x$ near the point $(0,1)$ and $(2 \pi, 1)$.
(c) The function $f(x)=\tan x$ near the point $(0,0)$.
(d) The function $f(x)=x^{2}$ near the points $(0,0)$ and $(1,1)$.
(e) The function $f(x)=x^{3}$ near the points $(0,0)$ and $(1,1)$.
(f) The function $f(x)=(x-5)^{2}$ near the points $(5,0)$ and $(0,25)$.
(g) The function $f(x)=e^{x}$ near the point $(0,1)$.
(h) The function $f(x)=\frac{x+1}{2 x^{2}-1}$ near the points $(0,-1)$ and $(1,2)$.

## Answers

(a) $\frac{d}{d x} \sin x=\cos x$

Near $(0,0): f(x) \approx x$
Near $(\pi, 0): f(x) \approx-x+\pi$
(b) $\frac{d}{d x} \cos x=-\sin x$

Near $(0,1): f(x) \approx 1$
$\operatorname{Near}(2 \pi, 1): f(x) \approx 1$
(c) $\frac{d}{d x} \tan x=\sec ^{2} x$

Near $(0,0): f(x) \approx x$
(d) $\frac{d}{d x} x^{2}=2 x$

Near $(0,0): f(x) \approx 0$
Near $(1,1): f(x) \approx 2 x-1$
(e) $\frac{d}{d x} x^{3}=3 x^{2}$

Near $(0,0): f(x) \approx 0$
Near $(1,1): f(x) \approx 3 x-2$
(f) $\frac{d}{d x}(x-5)^{2}=2 x-10$ Near $(5,0): f(x) \approx 0$
Near $(0,25): f(x) \approx-10 x+25$
(g) $\frac{d}{d x} e^{x}=e^{x}$

Near $(0,1): f(x) \approx x+1$
(h) $\frac{d}{d x} \frac{x+1}{2 x^{2}-1}=-\frac{2 x^{2}+4 x+1}{\left(2 x^{2}-1\right)^{2}}$

Near $(0,-1): f(x) \approx-x-1$
Near $(1,2): f(x) \approx-7 x+9$

