Problem Set 17: Implicit Derviatives

Key skills: Implicit Differentiation, Chain Rule, Tangent Lines

Practice Problems

For each of the following curves, find a general expression for the implicit derivative $\frac{d y}{d x}$, determine where the derivative is undefined, and calculate the tangent line at the given points.

It is strongly recommended that you first plot each curve, using Desmos or another curve-graphing program.
a) $x^{2}+y^{2}=36$, tangent at $(0,6)$, at $(3 \sqrt{2}, 3 \sqrt{2})$, and at $(-3 \sqrt{2}, 3 \sqrt{2})$.
b) $x^{2}-y^{2}=36, \quad$ tangent at $(\sqrt{1000036}, 1000)$
c) $y^{2}-x=0, \quad$ tangent at $(1,1)$, and at $(1,-1)$
d) $x^{2}-y=0, \quad$ tangent at $(1,1)$
e) $y^{2}+\cos x=1, \quad$ tangent at $(\pi, \sqrt{2})$, and at $\left(\frac{\pi}{2},-1\right)$

Answers

a) $\frac{d y}{d x}=-\frac{x}{y}$
$(0,6)$: The slope is 0 , so the tangent line is $y=6$ (a constant).
$(3 \sqrt{2}, 3 \sqrt{2})$: The slope is -1 . To find the intercept: $(3 \sqrt{2})=-(3 \sqrt{2})+b$, so $b=6 \sqrt{2}$. Then the tangent line is $y=-x+6 \sqrt{2}$.
$(-3 \sqrt{2}, 3 \sqrt{2})$: The slope is 1 . To find the intercept: $(3 \sqrt{2})=(-3 \sqrt{2})+b$, so again $b=6 \sqrt{2}$. (You can see this from symmetry if you sketch these tangent lines on the curve.) Then the tangent line is $y=x+6 \sqrt{2}$
b) $\frac{d y}{d x}=\frac{x}{y}$
$(\sqrt{1000036}, 1000):$ The slope is $\frac{\sqrt{1000036}}{1000} \approx 1.000018 \approx 1$. To a very good approximation, the tangent line is $y=x$.
c) $\frac{d y}{d x}=\frac{1}{2 y}$
$(1,1)$: The slope is $1 / 2$. To find the intercept: $(1)=\frac{1}{2}(1)+b$, so $b=1 / 2$. Then the tangent line is $y=\frac{1}{2} x+\frac{1}{2}$.
$(1,-1)$: The slope is $-1 / 2$. To find the intercept: $(-1)=-\frac{1}{2}(1)+b$, so $b=-1 / 2$. Then the tangent line is $y=-\frac{1}{2} x-\frac{1}{2}$.
d) $\frac{d y}{d x}=2 x$
$(1,1)$: The slope is 2 . To find the intercept: $(1)=2(1)+b$, so $b=-1$. Then the tangent line is $y=2 x-1$.
e) $\frac{d y}{d x}=\frac{\sin x}{2 y}$
$(\pi, \sqrt{2})$: The slope is 0 , so the tangent line is $y=\sqrt{2}$ (a constant).
$\left(\frac{\pi}{2},-1\right)$: The slope is $-\frac{1}{2}$. To find the intercept: $-1=-\frac{1}{2}\left(\frac{\pi}{2}\right)+b$, so $b=\frac{\pi}{4}-1$. Then the tangent line is $y=-\frac{1}{2} x+\frac{\pi}{4}-1$.

