Problem Set 13: Continuity

Key skills: Continuity, Piecewise Functions

Practice Problems

For each of these functions, determine whether or not the function is continuous at the given x value.

a)
$$f(x) = x^2$$
 at $x = 0$ b) $f(x) = \frac{1}{x^2}$ at $x = 0$ c) $f(x) = \frac{x+2}{(x+2)(x+4)}$ at $x = -2$

For each of these piecewise functions, determine whether or not the function is continuous at its crossover point.

$$d) \quad f(x) = \begin{cases} 2 & x \le 1 \\ 4 & x > 1 \end{cases} \qquad e) \quad f(x) = \begin{cases} 2x & x < 1 \\ x^2 + 3x & x \ge 1 \end{cases} \qquad f) \quad f(x) = \begin{cases} 3x + 2 & x < 2 \\ x^3 & x = 2 \\ 4x^2 - 8 & x > 2 \end{cases}$$

For each of these piecewise functions, find a value for a which makes the function continuous, or show that no such value exists.

g)
$$f(x) = \begin{cases} x^2 + 3x - 1 & x \ge 2\\ \frac{a}{x} & x < 2 \end{cases}$$
 h) $f(x) = \begin{cases} x^2 + 3x - 1 & x \ge 2\\ \frac{a}{x-2} & x < 2 \end{cases}$

Answers

- a) $\lim_{x\to 0^-} f(x) = 0$. $\lim_{x\to 0^+} f(x) = 0$. f(0) = 0. Continuous.
- b) Discontinuous; f(0) is not defined.

c) Discontinuous; f(-2) is not defined. (Note that the (x + 2) factors cancel, but they can only be cancelled where $x + 2 \neq 0$.)

- d) Discontinuous; f(x) approaches (horizontally!) different values from each direction.
- e) $\lim_{x\to 1^-} 2x = 2$. $\lim_{x\to 1^+} x^2 + 3x = 4$. Discontinuous.
- f) $\lim_{x\to 2^-} 3x + 2 = 8$. $(2)^3 = 8$. $\lim_{x\to 2^+} 4x^2 8 = 8$. Continuous.

g) $\lim_{x\to 2^+} f(x) = 9$. $\lim_{x\to 2^-} f(x) = \frac{a}{2}$. Continuous if a = 18.

h) $\lim_{x\to 2^+} f(x) = 9$. $\lim_{x\to 2^-} f(x) = -\infty$. Not continuous for any a.