Problem Set 13: Continuity

Key skills: Continuity, Piecewise Functions

Practice Problems

For each of these functions, determine whether or not the function is continuous at the given x value.
a) $f(x)=x^{2}$
at $x=0$
b) $f(x)=\frac{1}{x^{2}} \quad$ at $x=0$
c) $f(x)=\frac{x+2}{(x+2)(x+4)} \quad$ at $x=-2$

For each of these piecewise functions, determine whether or not the function is continuous at its crossover point.
d) $f(x)= \begin{cases}2 & x \leq 1 \\ 4 & x>1\end{cases}$
e) $f(x)= \begin{cases}2 x & x<1 \\ x^{2}+3 x & x \geq 1\end{cases}$
f) $f(x)= \begin{cases}3 x+2 & x<2 \\ x^{3} & x=2 \\ 4 x^{2}-8 & x>2\end{cases}$

For each of these piecewise functions, find a value for a which makes the function continuous, or show that no such value exists.

$$
\text { g) } f(x)=\left\{\begin{array}{ll}
x^{2}+3 x-1 & x \geq 2 \\
\frac{a}{x} & x<2
\end{array} \quad \text { h) } f(x)= \begin{cases}x^{2}+3 x-1 & x \geq 2 \\
\frac{a}{x-2} & x<2\end{cases}\right.
$$

Answers

a) $\lim _{x \rightarrow 0^{-}} f(x)=0 . \lim _{x \rightarrow 0^{+}} f(x)=0 . f(0)=0$. Continuous.
b) Discontinuous; $f(0)$ is not defined.
c) Discontinuous; $f(-2)$ is not defined. (Note that the $(x+2)$ factors cancel, but they can only be cancelled where $x+2 \neq 0$.)
d) Discontinuous; $f(x)$ approaches (horizontally!) different values from each direction.
e) $\lim _{x \rightarrow 1^{-}} 2 x=2$. $\lim _{x \rightarrow 1^{+}} x^{2}+3 x=4$. Discontinuous.
f) $\lim _{x \rightarrow 2^{-}} 3 x+2=8 .(2)^{3}=8 . \lim _{x \rightarrow 2^{+}} 4 x^{2}-8=8$. Continuous.
g) $\lim _{x \rightarrow 2^{+}} f(x)=9 . \lim _{x \rightarrow 2^{-}} f(x)=\frac{a}{2}$. Continuous if $a=18$.
h) $\lim _{x \rightarrow 2^{+}} f(x)=9$. $\lim _{x \rightarrow 2^{-}} f(x)=-\infty$. Not continuous for any a.

