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Chapter 1

Introduction

Calculus III was primarily devoted to extending the derivative to multivariable scalar functions. This
course starts with the parallel program of extending the integral to multivariable scalar functions.
Unlike the derivative, the definition of the multivariable (definite) integral is relativley similar to the
single variable case. The challenge of integration is in the geometry of the subsets of Rn involved in
the integration. The course proceeds to a number of applications of multivariable integration.

The second half of the course covers the material known as cector calculus. This is the calculus of
multivariable vector functions: functions with multivariable outputs as well as inputs. We investigate
several derivative and integral extensions for these functions.

Since the extension of the derivative to multivariable functions is multi-faceted, we loose the simple idea
of an antiderivative. However, in the context of vector calculus, we can produce several new theorems
which resemble the fundamental theorem of calculus, even without a simple anti-derivative. The fruit
of this labour are the famous Gauss, Green and Stokes theorems.

The final section of the course is a brief introduction to differential geometry. We introduce the ideas
of manifolds and differential forms (and we finally get a reasonable definition of the differential ‘dx’
used in integrals). We develop this material far enough to show the deep connections underlying the
fundamental theorem of calculus and the Gauss, Green and Stokes theorems.
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Chapter 2

Integration

2.1 The Indefinite Integral

In single variable calculus, the integral is defined as a limit of approximating Riemann sums.

Definition 2.1.1. Let f : [a, b] → R be a continuous function. If we partion the interval [a, b] into n
equal pieces of size b−a

n and x∗k is any element in the kth partition, the integral of f on [a, b] is defined
to be ∫ b

a

f(x)dx = lim
n→∞

n∑
k=1

f(x∗k)
b− a
n

.

Recall the fundamental theorem of calculus.

Theorem 2.1.2. Let f : [a, b]→ R be a continuous function. Then if F (x) is any antiderivative of f
(i.e. F ′(x) = f(x)), we can evaluate the definite integral using the antiderivative.∫ b

a

f(x)dx = F (b)− F (a)

There are several version of the fundamental theorem, but all say the same thing: (single-variable)
derivatives and integrals are inverse processes.

d

dx

∫ x

a

f(t)dt = f(x)

2



We used the indefinite integral
∫
fdx to stand for all anti-derivatives of the single-variable function.

Is there a multivariable version of this anti-derivative? Calculus III tried to extend the derivative to
multi-variable functions. The result was a collection of construction: partial derivatives, tangent (hyper-
)planes, gradients and the Jacobian matrix. However, none of these notions of the derivative gave a
new multi-variable funciton. Therefore, there isn’t a nice notion of anti-derivative: going back doesn’t
make sense, since going forward led to more complicated constructions.

We can, however, take indefinite integrals in one variable, much like partial derivatives. If f(x, y, z) is
a multivariable continuous function, then the following three integrals are the counterparts of partial
differentiation. In each of the following we pretend the other two variables are constant; only the
variable indicated by the infintesimal term is non-constant.∫

f(x, y, z)dx∫
f(x, y, z)dy∫
f(x, y, z)dz

Our best extention of the fundamental theorem is just a version involving the partial derivatives.∫
∂

∂x
f(x, y, z)dx = f(x, y, z) + g(y, z)∫

∂

∂y
f(x, y, z)dy = f(x, y, z) + g(x, z)∫

∂

∂z
f(x, y, z)dz = f(x, y, z) + g(x, y)

Note that the ‘constants of integration’ now may involve the other variables. When we do single
variable integration or partial differentiation, we pretend all the other variables are constant; therefore,
the constant term can include those variables.

We will discover much deeper and more interesting extensions of the fundamental theorem of calculus
later in this course. However, they will come from entirely new directions. For now, this is as far as we
can extend the fundamental theorem. Nothing more can be said about the indefinite integral; it is not
used for multivariable functions.

2.2 The Definite Integral

The single-variable definite integral measures the area under the graph of a function. We also have
graphs for multivariable functions. For a function of two variables, the graph is in R3 and there is
volume under the grpah instead of area. For functions of three or more variables, the graphs are in
higher dimensional spaces and enclose a hyper-volume. The definite integral asks for the value of this
volume or hyper-volume.

Single variable integration took place over intervals. We do the same for multi-variable integration, so
we need intervals in Rn.

3



Definition 2.2.1. An closed intevral I in Rn is product of single-variable closed intervals.

I = [a1, b1]× [a2, b2]× . . .× [an, bn]

This is the subset of Rn consisting of all (x1, x2, . . . , xn) such that a1 ≤ x1 ≤ b1, a2 ≤ x2,≤ b2 and so
on until an ≤ xn ≤ bn. In R2 it is a rectangle. In R3 it is a rectangular prism. Similarly, by using open
interval, (a, b), in the definition, we can define an open interval in Rn.

For the single-variable integral, we partitioned the interval into n pieces. We can also partition these
multi-variable intervals. In general, there are several ways to do so; one of the easiest is simply to divide
each of the single variable intervals into l pieces. In R2, this splits the rectangle into a checkerboard
pattern, with l2 small rectangles. In R3, it splits into l3 small rectangular prisms. In Rn there are ln

subdivisions.

When we have a partition of I into ln pieces, we can use the same limit process as the single variable
integral. Let x∗ be any point in each piece of the partition and estimate the (hyper-)volume over that
piece of the interval by a rectangular (hyper-)volume. The height is f(x∗). The (hyper-) volume of one
pieces of our approximation is this height multiplied by the size of the small partition pieces, in the
appropriate dimension. We can write ∆V for this size, thinking of V for volume or hypervolume. Then
we

Definition 2.2.2. The integral of a function f : I → R on an interval I ⊂ Rn is defined as the
following limit, if it exists. If the limit exists, we say that f is integrable on the interval I.∫

I

f(x1, x2, . . . , xn)dV = lim
l→∞

∑
ln

f(x∗)∆V

In the multivariable integral, the ∆V becomes an infinitesimal piece of area, volume or hypervolume
dV .

Let’s specialize this to R2. In R2, we often write ∆A and dA for area instead of volume. Consider an
interval in Rn: I = [a1, b1]× [a2, b2].∫

I

f(x, y)dA = lim
l→∞

l∑
i=1

l∑
j=1

f(x∗i , y
∗
j )∆x∆y

We’ve clarified the nature of the sum by seperating the indicies, counting the divisions of each single-
variable interval. The points are also more clear: x∗i is in the ith piece of [a1, b1] and y∗j is in the jth

piece of [a2, b2]. Finally, ∆x is b1−a1
l ∆y is b2−a2

l , and the product ∆x∆yis area of each piece of the
partion.

The same works in R3, with three sums.∫
I

f(x, y, z)dV = lim
l→∞

l∑
i=1

l∑
j=1

l∑
k=1

f(x∗i , y
∗
j , z
∗
k)∆x∆y∆z
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Likewise in Rn, with n sums.∫
I

f(x1, x2, . . . , xn)dV = lim
l→∞

l∑
i1=1

l∑
i2=1

. . .

l∑
in=1

f(x∗1,i1 , x
∗
2,i2 , . . . , x

∗
n,in)∆x1∆x2 . . .∆xn

For single variable functions, the definite integral measured the area under the graph of the function
over the interval I. Here the interpretation is the same, but the notion of size increases with dimension.
For functions of two variables, the definite integral is the volume under the graph over the rectangle I
in question. For functions of more than two variables, we get the hyper-volume under the graph and
above the interval.

There are several important similarities between the multi-variable definition and the familiar single-
variable definition. Both are limits of approximation methods. All the core definitions of calculus involve
some algebraic approximation and the limit of such a process. Multi-variable integrals are no different;
the algebra is a bit more complicated to handle the higher dimensions, but the process is the same.
Also, both definitions are very, very difficult to work with. We needed the fundamental theorem and
many integration techniques to calculate single variable integrals. We will need similar theorems and
techniques to calculate multivariable integrals.

For single variable functions, if the limit defining the integral existed, we said the function was inte-
gralable. The same is true for multivariable functions.

Definition 2.2.3. . Let f : I → R be a function of n variables. If we can break the interval I up
into finitely many pieces and if f is continuous on each of the pieces, we say the function is piecewise
continuous.

Proposition 2.2.4. All piecewise continuous functions of several variables are integrable.

There are, in fact, other functions which are also integrable. However, they can be difficult to construct.
As an aside, there are also different notions of integrability and different definition of the integral. What
we have discussed here is the Riemann integral, and this notion of integrability is Riemann-integrability.
In higher mathematics, the most commonly used definition of the integral is a different definition, called
the Lebesgue integral. It is also an approximation process, but it involve approximating the function
with a special functions that only take finitely many values. The Lebesgue integral agrees with the
Riemann integral on all Riemann-integrable functions. However, there are functions where the Lebesgue
integral is defined but the limit in the Riemann integral fails to converge. It is interesting to observe
that something as fundamental as the integral has multiple definitions and the choice of definitions has
a real, measurable effect on our mathematics.

The multi-variable definite integral has some familiar properties.

Proposition 2.2.5. Let I be an interval in Rn, f : I → R and g : I → R integrable functions on I,
and c ∈ R. First, the integral is linear.∫

I

cf(x1, . . . , xn)dV = c

∫
I

f(x1, . . . , xn)dV∫
I

(f ± g)dV =

∫
I

fdV ±
∫
I

gdV
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Assume, in addition, that f ≤ g on all of I.∫
I

fdV ≤
∫
I

gdV

Let J be another interval where f is integrable and assume J is adjacent to I (such that they have no
open intersection and their union I ∪ J is also also an interval).∫

I∪J
fdV =

∫
I

fdV +

∫
I

fdV

2.3 Iterated Integrals

The previous section gave us a good definition, but how do we actually calculate these integrals? Let
I = [a, b]× [c, d] be an interval in R2. The infintesimal piece of area dA in the integral can be thought of
as the product dxdy of infinitesimal pieces of length. Separating x and y, we can interate the integral,
first working in x and then in y.∫

I

f(x, y)dA =

∫ d

c

[∫ b

a

f(x, y)dy

]
dx

We work from the inside out: the infinitesimal piece dx or dy that is closest to the function acts first. Its
bounds are written on the right, closest to the function. That integral is a single-variable integration,
pretending that the other variables are constant, as we did with partial derivatives. Then, once the
firstintegration is finished, we proceed outward to the next integral.

The same works in higher dimensions: we just iterate through the variables. In R3, over the interval
I = [a1, b1]× [a2, b2]× [a3, b3] with three iterations.∫

I

f(x, y, z)dV =

∫ b3

a3

[∫ b2

a2

[∫ b2

a1

f(x, y, z)dx

]
dy

]
dz

Notice that we always have to match the bounds of integration with the correct infinitesimal piece,
working from the inside out.

You might ask, at this point, what happens when we change the order? We have to choose an order
for these iterated integrals. Fubini’s Theorem tells us that we are able to choose the order.

Theorem 2.3.1. If f : I → R is an integrable function on an interval, then the iterated integral is
independent of the choice or order. Any ordering of the variables will result in the same value.

In working with iterated integrals, we must be careful with the evaluation if each integral. It’s easy to
confuse the variable of integration and substitue for the wrong variables.
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Example 2.3.2. Consider the interval I = [0, 1] × [3, 6] and the function f(x, y) = ex + ey. In this
example, I’ve carefully labelled the bound to remind myself which variable to replace.∫

I

fdA =

∫ 1

0

∫ 6

3

f(x, y)dydx

=

∫ 1

0

∫ 6

3

(ex + ey)dydx

=

∫ 1

0

∫ 6

3

exdydx+

∫ 1

0

∫ 6

3

eydydx

=

∫ 1

0

yex
∣∣∣∣y=6

y=3

dx+

∫ 1

0

ey
∣∣∣∣y=6

y=3

dx

=

∫ 1

0

3exdx+

∫ 1

0

(e6 − e3)dx

= 3ex
∣∣∣∣x=1

x=0

+ x(e6 − e3)

∣∣∣∣x=1

x=0

= 3e− 3 + e6 − e3

Example 2.3.3. Consider the interval I = [−1, 1]× [−2, 2] and the function f(x, y) = x2y3.∫
I

f(x, y)dA =

∫ 2

−2

∫ 1

−1
x2y3dxdy

=

∫ 2

−2

x3y3

3

∣∣∣∣1
−1
dy

=

∫ 2

−2

(
y3

3
+
y3

3

)
dy =

∫ 2

−2

2y3

3
dy

=
y4

6

∣∣∣∣2
−2

=
16

6
− 16

6
= 0

Just to check, we could change the order.∫
I

f(x, y)dA =

∫ 1

−1

∫ 2

−2
x2y3dydx

=

∫ 1

−1

x2y4

4

∣∣∣∣2
−2
dx

=

∫ 1

−1
(2x2 − 2x2)dx =

∫ 1

−1
0dx = 0

We notice that the second calculation is actually a bit simplier, since we find the zero term earlier in
the process. Often, one order of variables leads to an easier calculation. Fubini’s theorem lets us chose
any order, so we try to chose the order that has the easiest calculations. Of course, the right choice
isn’t always obvious before we start doing the calculations.
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Example 2.3.4. Consider the function f(x, y) = sin(x+ y) on the interval I = [0, π]× [0, π/2].∫
I

f(x, y)dxdy =

∫ π
2

0

∫ π

0

sin(x+ y)dxdy

=

∫ π
2

0

(− cos(x+ y))

∣∣∣∣π
0

dy

=

∫ π
2

0

(cos y − cos(y + π))dy =

∫ π
2

0

2 cos ydy

= 2 sin y

∣∣∣∣π2
0

= 2− 0 = 2

Example 2.3.5. If we have a integrable function on I = [a, b]× [c, d] with the special form f(x, y) =
g(x)h(y) for some single variable functions g and h, then we call f(x, y) seperable. The integral seperates
entirely into two single variable integrals.∫

I

f(x, y)dx =

∫ b

a

∫ d

c

g(x)h(y)dydx

=

∫ b

a

g(x)

[∫ d

c

h(y)dy

]
dx

=

[∫ d

c

h(y)dy

][∫ b

a

g(x)dx

]
The operations above are justified because the pieces which we move in and out of a integral do not
involve that variable of integration. In this way, we can seperate the integral into two single variable
integrals. This kind of seperation of variables is a very important technique in differential equations.

Example 2.3.6. Consider the function f(x, y) = 1√
(x2+y2)3

on the interval I = [0, 1]× [0, 1]. We would

like to try to integrate this function over this interval, but there is a problem. At one corner of the
interval, (0, 0), the function is undefined. As we approach that corner, the function diverges to infinity.
Is the integral still defined? We can use a limit in the bounds, in the last step, to investigate.∫

I

f(x, y)dx =

∫ 1

0

∫ 1

0

1√
(x2 + y2)3

dxdy

=

∫ 1

0

x

y2
√
x2 + y2

∣∣∣∣∣
1

0

dy

=

∫ 1

0

1

y2
√

1 + y2
dy

= lim
a→0+

∫ 1

a

1

y2
√

1 + y2
dy

= lim
a→0+

−
√

1 + y2

y

∣∣∣∣∣
1

a

=
−
√

2

1
+ lim
a→0+

√
1 + a2

a
=∞
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This integral diverges; the volume under the curve grows to infinity as we include more and more
of the interval approaching the point (0, 0). This is an improper integral, where the function has an
asymptote at the edge of the domain of integration. In general, we treat improper integrals as we did
before: we use limits approaching the edges of the domain and calculate the limit of the integral.

2.4 Integration over Arbitrary Sets

Example 2.4.1. Consider a geometrically interesting example. The function f(x, y) = a−a(|x−y|+|x+y|)2b
over the interval [−b.b] × [−b, b] describes a square pyramid with height a and side length 2b. What
is the volume of such a pyramid? Doing the integral directly is difficult with the various evaluations
of the absolute value terms. However, we can integrate over one quarter of pyramid with the interval
[0, b] × [0, b], then multiply by 4 to get the entire area. However, this doesn’t solve the problem with
the absolute value terms. We need to split the domain into regions where x > y and x < y. In the
interval [0, b]× [0, b], those two regions are triangles, and we don’t know how to deal with integration
over a triangle.

Integration over intervals isn’t sufficient; we need to integrate over any set S ⊂ Rn (at least, any
reasonable set). How do we do this? As with many aspects of calculus, there is a formal, proper
definition which turns out to be difficult to work with. Afer the definition, we seek set of techniques
which allow us to do calculations.

Definition 2.4.2. Let S be a subset of Rn. The characteristic function of S is defined as follows,
where v ∈ Rn.

χS(v) :=

{
1 v ∈ S
0 v /∈ S

The characteristic function is very simple: it has value 1 on the set S and 0 everywhere else.

Definition 2.4.3. Let S be a subset of Rn which is contained in an interval I. S is called a integrable
set if the following integral exists.∫

I

χSdV

Almost all sets we will work with are integrable. Sets which are not integrable are very strange sets (at
least, for doing anything geometric). The archetypical example is Q ⊂ R: Q is not an integrable subset
of R. As we proceed, we won’t worry too much about integrability since all reasonable geoemtric sets
are integrable. In particular, every open subset of Rn is integrable.

Definition 2.4.4. Let S be a integrable subset of Rn with S ⊂ I for some interval I. Let f : S → R
be an function which can be extended to an integrable function f̃ on I. Then the integral of f over S
is defined as:∫

S

fdV =

∫
I

f̃χSdV

9



The characteristic function removes all values of f outside the set S, so all that the integral measure
are the values of f over S.

As we pointed out before, this is almost entirely useless for calculation. We need a better technique; a
version of iterated integrals for arbitrary subsets.

Example 2.4.5. Let’s return to the square pyramid situation. We wanted to integrate over two
triangles in the interval [0, b] × [0, b], seperated by the line x = y. We’re going to try for a similar
strategy as for intervals: we want to interate single variable integrals. However, now we allow the
bounds of integration to include the other variables.

Specifically, we can describe the first triangle (where y < x) by saying that x ∈ [0, b], then, once we’ve
set an x value, y ∈ [0, x]. In this order, the y variable depends on the x for its bounds. The integral
over this triangle is now an interated integral.∫

I

f(x, y)dA =

∫ b

0

∫ x

0

f(x, y)dydx

We could have reversed the order. If we have y ∈ [0, b] then the condition y < x means that x ∈ [y, b].∫
I

f(x, y)dA =

∫ b

0

∫ b

y

f(x, y)dxdy

Let’s now evaluate the square pyramid integral. The function was f(x, y) = a− a(|x−y|+|x+y|)
2b . On the

triangle in [0, b]× [0, b] where y < x, the absolute values are |x− y| = x− y and |x+ y| = x+ y, so the

function is a− a(x−y+x+y)
2b = a− 2ax

2b = a− ax
b .∫

T

f(x, y)dA =

∫ b

0

∫ x

0

a− ax

b
dydx

=

∫ b

0

ay − axy

b

∣∣∣x
0
dx

=

∫ b

0

ax− ax2

b
dx

=
ax2

2
− ax3

3b

∣∣∣∣b
0

=
ab2

2
− ab3

3b
=
ab2

2
− ab2

3
=
ab2

6

This measures one eighth of the total pyramid, so the total volume is 4ab2

3 .
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Example 2.4.6. This technique also allows us to derive the volume of a sphere. We can think of the
top half of a sphere as the volume under the graph of f(x, y) =

√
r2 − x2 − y2. However, it is only

the volume over the circle x2 + y2 = r2 in the xy plane. It we take the quarter of that circle in the
positive quadrant, let D be the region where x ∈ [0, r] and y ∈ [0,

√
r2 − x2]. One eighth of the sphere

is measure by the following iterated integral.∫
D

f(x, y)dA =

∫ r

0

∫ √r2−x2

0

√
r2 − x2 − y2dydx

=

∫ r

0

(
y

2

√
r2 − x2 − y2 +

(r2 − x2)

2
arcsin

(
y√

r2 − x2

)∣∣∣∣
√
r2−x2

x

)
dx

=

∫ r

0

√
r2 − x2

2

√
r2 − x2 − (r2 − x2) +

(r2 − x2)

2
arcsin

(√
r2 − x2√
r2 − x2

)
dx

=

∫ r

0

r2 − x2

2

π

2
dx =

∫ r

0

π(r2 − x2)

4
dx

=
πr2x

4
− πx3

12

∣∣∣∣r
0

=
πr3

4
− πr3

12
=
πr3

6

Multiplying by 8 gives 8πr3

6 = 4πr3

3 , which is the familiar expression for the volume of a sphere. Of

couse, we could have reversed the order and taken y ∈ [0, r] and x ∈ [0,
√
r2 − y2] and repeated very

similar steps to also get the same answer.

Example 2.4.7. We can also calcualte the volume of a cone of height h and radius r. We integrate
over the same circle of radius r, but the function is f(x, y) = h − h

r

√
x2 + y2. (This function can be

derived by looking at similar triangles in vertical sections of the cone.)∫
D

f(x, y)dA = 4

∫ r

0

∫ √r2−x2

0

(
h− h

r

√
x2 + y2

)
dydx

The cone integral is quite difficult to do directly; for now, we’ll leave it. We will return to this integral
when we do change of variables.

The general form of an interated integral starts with constant bounds on the outside variable. Then
inside bounds can include functions of variables from the outside integrals. If g and h are function, we
have two general forms in R3.∫ b

a

∫ h(x)

g(x)

f(x, y)dydx∫ b

a

∫ h(y)

g(y)

f(x, y)dxdy

11



Likewise, in R3 we have three general forms (for functions which satisfy g1 ≤ h1 and g2 ≤ h2).∫ b

a

∫ h2(x)

g1(x)

∫ h2(x,y)

g2(x,y

f(x, y, z)dzdydx∫ b

a

∫ h2(x)

g1(x)

∫ h2(x,z)

g2(x,z

f(x, y, z)dydzdx∫ b

a

∫ h2(y)

g1(y)

∫ h2(x,y)

g2(x,y

f(x, y, z)dzdxdy∫ b

a

∫ h2(y)

g1(y)

∫ h2(y,z)

g2(y,z

f(x, y, z)dxdzdy∫ b

a

∫ h2(z)

g1(z)

∫ h2(x,z)

g2(x,z

f(x, y, z)dydxdz∫ b

a

∫ h2(z)

g1(z)

∫ h2(y,z)

g2(y,z

f(x, y, z)dxdydz

Example 2.4.8. To integrate over an eighth of a solid sphere of radius r in R3, we might take x ∈ [0, r],

y ∈ [0,
√
r2 − x2] and x ∈ [0,

√
r2 − x2 − y2].

V =

∫ r

0

∫ √r2−x2

0

∫ √r2−x2−y2

0

f(x, y, z)dzdydx

This gives another way to calculate the volume of a sphere: just integrate 1 over this region (them
multiply by 8).

V =

∫
D

1dV =

∫ r

0

∫ √r2−x2

0

∫ √r2−x2−y2

0

1dzdydx

=

∫ r

0

∫ √r2−x2−y2

0

√
1− x2 − y2dydx

The understanding of volume in the previous example if archetypical.

Definition 2.4.9. Let S be a integrable set in Rn. Then the size (area, volume, hypervolume) of S is
defined to be∫

S

1dV.

Note that this is a definition: we have no other way, in general, to understand the size of sets. This
definition is the start of another whole branch of mathematics called measure theory. It deals with
various ways of measuring sizes of sets in topological spaces.

We mentioned earlier that all open sets are integrable. We have another simplifying theorem that
ensure we only need to integrate over open sets.

12



y

x

(1, 1)

(0, 0)

(3, 1)
(2, 1)

(1, 0)

Figure 2.1: Region of Integration

Proposition 2.4.10. Let S be an integrable set in Rn. Let S0 be the set of interior points of S. Let
f : S → R be an integrable function. Then∫

S

fdV =

∫
S0

fdV

This proposition means that we can ignore any inconveniences which happen on the boundaries of
sets. (Note that we still do need limits for improper integrals, when the value of a function approaches
∞ near the boundary of a set). The proposition also means that sets which are essentially of lower
dimensions do not matter in integration. If we are integrating over subsets of R3, then integrating over
points, line and planes amounts to nothing. Points, lines, and planes don’t have any interior points in
R3, so we might as well be integrating over the empty set, which gives zero.

Other than ignoring boundaries and smaller dimensional pieces, our approach to general sets is to
break them up into pieces. It is a general result in topology, which we won’t get into here, that any
(reasonable) set can be broken up in to pieces (possibly infinitely many) where the previous style
of integral applies. We can also be creative: for example, we could integrate over a larger circle and
subtract the integral over a small circle to integrate over a ring-shaped domain. In these various ways
we can set up integrals over any (reasonable) subset of Rn.

13



Example 2.4.11. Say we wanted to integrate the function f(x, y) = xy over the triangle T with
vertices (0, 0), (4, 5) and (6, 2). There isn’t any one system of iterated integrals that covers this region;
therefore we have to treat it as two sections. We divide the triangle into two pieces using the line
x = 4. On the left, the y coordinate is bounded by the lines y = x/3 and y = 5x/4. On the right, the
y coordinate is bounded by y = x/3 and y = −3x/2 + 11. We calculate two integrals.∫ 4

0

∫ 5x
4

x
3

xydydx =

∫ 4

0

xy2

2

∣∣∣∣ 5x4
x
3

dx

=

∫ 4

0

x

2

(
25x2

16
− x2

9

)
dx

=

∫ 4

0

25x3

32
− x3

18
=

∫ 4

0

209

289
x3dx

=
209

288

x4

4

∣∣∣∣4
0

=
1196

9∫ 6

4

∫ −3x
2 −11

x
3

xydydx =

∫ 6

4

xy2

2

∣∣∣∣
−3x
2 −11

x
3

dx

=

∫ 6

4

x

2

(
−3x

2
+ 11

)2

− x

2

x2

9
dx

=

∫ 6

4

x

2

(
9x2

4
− 32x+ 121

)
− x3

18
dx

=

∫ 6

4

77x3

81
− 33x2

2
+

121x

2
dx

=
77x4

324
− 11x3

2
+

121x2

4

∣∣∣∣6
4

=
77 · 64

324
− 11 · 63

2
+

121 · 62

4
− 77 · 44

324
+

1143

2
− 121 · 42

4
=

86845

81

The total is the sum of the two integrals.∫
T

fdA =
1196

9
+

86845

81
=

97609

81

Example 2.4.12. Say we want to integrate the function f(x) = x2 + y2 over the region shown in
Figure 2.1.

We should divide the figure up into three pieces. The first piece is the triangle (0, 0), (1, 1), and (1, 0).
The second is the half-circle above y = 1. The third is the remaining triangle (1, 1), (2, 1) and (1, 0).

The first integral is a short calculation.∫ 1

0

∫ x

0

x2 + y2dydx =

∫ 1

0

x2y +
y3

3

∣∣∣∣x
0

=

∫ 1

0

4x3

3
=
x4

3

∣∣∣∣1
0

=
1

3

14



The second integral is more involved.∫ 3

1

∫ 1+
√

1−(x−2)2

1

x2 + y2dydx

=

∫ 3

1

x2y +
y3

3

∣∣∣∣1+
√

1−(x−2)2

1

=

∫ 3

1

x2(1 +
√

1− (x− 2)2) +
(1 +

√
1− (x− 2)2)3

3
dx

u = x− 2

=

∫ 1

−1
(u2 + 4u+ 4)(1 +

√
1− u2) +

(1 +
√

1− u2)3

3
du

=

∫ 1

−1
u2 + 4u+ 4 + u2

√
1− u2 + 4u

√
1− u2 + 4

√
1− u2

+
1

3
+
√

1− u2 + (1− u2)− u2

3

√
1− u3du

=

∫ 1

−1

16

3
+ 4u+ 5

√
1− u2 + 4u

√
1− u2 + u2

√
1− u2 +

1

3
(1− u2)

3
2 du

=
16u

3
+ 2u2 + 4(1− u2)

3
2
−2

3

∣∣∣∣1
−1

+ 5

∫
−1

1
√

1− u2du+

∫ 1

−1
u2
√

1− u2du+
1

3

∫ 1

−1
(1− u2)

3
2 du

=
32

5
+ 0 + 0 +

1

8
2
√

1− u2(2u2 − 1) + arcsinu

∣∣∣∣1
−1

+ 5(u
√

1− u2 + arcsinu)
∣∣∣1
−1

+
1

3

1

8
(u(5− 2u2)

√
1− u2 + 3 arcsinu)

∣∣∣∣1
−1

=
32

3
+

1

8

(
π

2
− −π

2

)
+ 5

(
π

2
− −π

2

)
+

1

8

(
π

2
− −π

2

)
=

32

3
+
π

8
+ 5π +

π

8
=

32

3
+

21π

4
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The third integral is not quite as bad as the second.∫ 2

1

∫ 1

x−1
x2 + y2dydx =

∫ 2

1

x2y +
y3

3

∣∣∣∣1
x−1

dx

=

∫ 2

1

x2 +
1

3
− x2(x− 1)− 1

3
(x− 1)3dx

=

∫ 2

1

2

3
− x+ 3x2 − 4x3

3
dx

=
2x

3
− x2

2
+ x3 − x4

3

∣∣∣∣2
1

=
4

3
− 2 + 8− 16

3
− 2

3
+

1

2
− 1 +

1

3

=
7

6

The total is the sum of the three integrals.

1

3
+

32

3
+

21π

4
+

7

6
=

73

6
+

21π

4

Example 2.4.13. Here is an odd application of multiple integration. We know that e−x
2

has no
elementary antiderivative. Therefore, the intergal

A =

∫ ∞
−∞

e−x
2

dx

cannot be evaluated directly. However, this is a very important integral: e−x
2

is the normal distribution
and, in Statistics, we need to integrate it frequently. We’ll use integrals over R2, strangely enough, to
calculate this integral by squaring the single variable integra.

A = 2

∫ ∞
0

e−x
2

dx

A2 =

(
2

∫ ∞
0

e−x
2

dx

)(
2

∫ ∞
0

e−y
2

dy

)
The second integral uses a new variables since variables of integration only matter inside the integral.
Then we can combine the two integrals.

A2 = 4

∫ ∞
0

∫ ∞
0

e−x
2

e−y
2

dxdy

= 4

∫ ∞
0

∫ ∞
0

e−(x
2+y2)dxdy

16



Now we are going to do a substitution in the y variable. Treating the x variable as a constnat, we
replace y with y = xs so that dy = xds. If y = 0 then s = 0 and as y →∞, s→∞, so the bound for
s remain the same as the bounds for y. Remember, x is a constant through this whole substitution.

A2 = 4

∫ ∞
0

∫ ∞
0

−e−x
2(1+s2)xdxds

= 4

∫ ∞
0

−1

2(1 + s2)
e−x

2(1+s2)

∣∣∣∣∞
0

ds

= 2

∫ ∞
0

1

1 + s2
ds

= lim
a→∞

2 arctan a− arctan 0 =
2π

2
= π

A =

∫ ∞
−∞

e−x
2

dx =
√
π

We recover the area under the bell curve:
√
π. It’s a very strange result. However, if you taken any

statistics and worked on normal distributions, likely you will recall the presence of these strange
√
π

terms. Now we know they are present to normalize the area (since we want a probability function to
have area one under its graph).

2.5 Change of Variables

Substitution was very useful for single variable integration. In the e−x
2

example, we did single-variable
substitution in y, treating x as a constant. One might think that since we do iterated integrals, single
variable substitution is sufficient. However, treating substitution in several variables holistically turns
out to be very useful and powerful.

Let’s review single variable substitution, formalizing the language and showing the way forward for
higher dimensions. Consider a single variable integral.∫ x=b

x=a

f(x)dx

Typically, we substitute u = g(x) using some invertible function g. Then we have du = g′(x)dx and we
try to change all the x variables to u variables with some algebra. We also change the bounds, starting
from u = g(a) to u = g(b). In this process, the old variable is the domain of the transformation and
the new variable is the range.

However, for several variables we’re going other direction. We want the starting variables xi to be the
range. We do have one example from single variable calculus in this style; trigonometric substitution,
such as x = a sin θ, have the original variable as the output of the transformation.
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Therefore, in the single variable case, introduce a new variable u by x = h(u) for some invertible
function h. Then dx = h′(u)du and the bounds become h−1(a) and h−1(b). We get a new integral in
the variable u.

∫ u=h−1(b)

u=h−1(a)

f(h(u))h′(u)du

The key relationship here is dx = h′(u)du: the derivative tells us the relationships between the differ-
ential terms. In Calculus III, we did all that work on extending the notion of the derivative. We came
to the conclusion that the derivative measures (in local coordinates) the best linear approximation to
the function. In one variable, that was just multiplication by a number. In several variables, though,
that linear approximation was a matrix, called the Jacobian matrix. Let’s recall the definition.

Definition 2.5.1. Let F : Rn → Rn be a function on n variables, x1, . . . , xn. We can write F as its
component functions F1, . . . , Fn. Then the Jacobian Matrix of F is the matrix of all partial derivatives.

J(F ) =


∂F1

∂x1

∂F1

∂x2
. . . ∂F1

∂xn
∂F2

∂x1

∂F2

∂x2
. . . ∂F2

∂xn
...

...
...

...
∂Fn
∂x1

∂Fn
∂x2

. . . ∂Fn
∂xn


The determinant det J(F ) is called the Jacobian of the function and is often written |J(F )|. Note that
the notation | · | is a reminder to take a determinant; it is not an absolute value. The Jacobian is often
negative.

From the single variable case dx = h′(u)du, the Jacobian is part of the new differential du. If we start
with variables x1, x2, . . . , xn and we have a function F : Rn → Rn that has xi as it output (the original
variables are the range of the transformation), we can write x1 = F1(u1, . . . , un), x2 = F2(u1, . . . , un)
up to xn = Fn(u1, . . . , un). The Jacobian determines the relationship between the differential in these
variables.

dx1dx2 . . . dxn = |J(F )|du1du2 . . . dun

We can interpret the Jacobian as the change in area/volume/hyper-volume due to the change in
variables. Its appearance in the integral makes sense with this interpretation: the integral is measureing
area/volume/hyper-volume, so when we change variables, we need a term that keeps track of the relative
change in area/volume/hypervolume.
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Example 2.5.2. Let (x, y) = F (u, v) = (3u, 4v). Then we have

∂F1

∂u
= 3

∂F1

∂v
= 0

∂F2

∂u
= 0

∂F2

∂v
= 4

J(F ) =

(
3 0
0 5

)
|J(F )| = (3)(4)− (0)(0) = 12

dxdy = 12dudv

The function is a dialation by 3 in u and by 4 in v, so the effect on area is multiplication by 12, which
makes sense. The function is linear already, to the linear approximation is constant: it is exactly the
function itself.

Example 2.5.3. Let (x, y) = F (u, v) = (u2, v).

∂F1

∂u
= 2u

∂F1

∂v
= 0

∂F2

∂u
= 0

∂F2

∂v
= 1

J(F ) =

(
2u 0
0 1

)
|J(F )| = 2u

dxdy = 2ududv

This Jacobian isn’t constant. This is a stretch in u, the but effect is exagerated away from the origin
due to the square term. Therefore, as u get larger, the stretch effect is greater. The Jacobian reflects
that.
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Example 2.5.4. Let (x, y) = F (r, θ) = (r cos θ, r sin θ). (Polar coordinates!)

∂F1

∂r
= cos θ

∂F1

∂θ
= −r sin θ

∂F2

∂r
= sin θ

∂F2

∂θ
= r cos θ

J(F ) =

(
cos θ −r sin θ
sin θ r cos θ

)
|J(F )| = r

dxdy = rdrdθ

This Jacobian shows that the radius term gives the effect on area. This make sense: for larger circles,
the differential area is part of a larger arc.

Example 2.5.5. Let (x, y) = F (u, v) = (u, uv). This is the change in variables we used in the e−x
2

example, now treated as a two-variable changes of variables.

∂F1

∂u
= 1

∂F1

∂v
= 0

∂F2

∂u
= v

∂F2

∂v
= u

J(F ) =

(
1 0
v u

)
|J(F )| = u

dxdy = ududv

We can use a change of variables to help us with either the integrand or the region of integration.
Sometime, as in the following examples, the same transformation helps both. When we are choosing
a change of variables to simplify the region of integration, we are looking for a transformation where
some of the bounding curves of the region become u = c or v = c. We need constant bounds in at least
one of the variable to set up the iterated integral.

Example 2.5.6. Let D be the region in the first quadrant between the lines x + y = 1 and the line
x + y = 2. In the following integral, we want to simply the integrand and integrate over a simpler
region if possible.∫

D

cos

(
y − x
y + x

)
dA
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To simplify the integrand, we can look for transformations where u = x + y and v = x − y. Inverting
these (either by linear algebra, since the transformation is linear, or just by solving with conventional
algebra), we get x = u+v

2 and y = u−v
2 .

Then we look at the bounds. If we take x+y = 1 and replace x and y, we get u = 1. Likewise, x+y = 2
is u = 2. This is excellent, since we need at least one variable with constant bounds; we’ll take u to
be the variable of the outside integral. The other bounds are the axes, which we can express by the
equations y = 0 and x = 0. These turn into u = v and u = −v, respective. Therefore, the bounds of v
will be these two lines: v ∈ [u,−u].

Finally, we calculate the Jacobian.

xu =
1

2

xv =
1

2

yu =
1

2

yv = −1

2

|J | = −1

2

dxdy =
1

−2
dudv

We have the new integrand, the new bounds and the Jacobian. We can proceed to the new integral.∫
D

cos

(
y − x
y + x

)
dA =

∫ 2

1

∫ u

−u
cos

(
−v
u

)
−1

2
dvdu

=
−1

2

∫ 2

1

− sin

(
−v
u

)
(−u)

∣∣∣∣u
−u

du

=
−1

2

∫ 2

1

u(sin(−1)− sin(1))du

=
sin(1)− sin(−1)

2

u2

2

∣∣∣∣2
1

=
sin(1)− sin(−1)

2
(2− 1

2
) =

3(sin(1)− sin(−1))

4

Example 2.5.7. Let D be the region in the plane bounded by the curves y = 1
x , y = 3

x , y = 3x and
y = x. Consider the following integral.∫

D

xydA
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The integrand is reasonable, so we will chose a substitution to changes the bounds. We want constant
bounds in at least one variables. Here is one changes of variables which gets those constant bound:
(x, y) = F (u, v) = (uv, v). The lines y = 3x and y = x become v = 3uv and v = uv. Away from v = 0,
these lines are u = 1

3 and u = 1, so we have constant bounds in u and we will treat u as the outside
variable. (We are save with the assumption v = 0 since v = y and the region is disjoint from the x-axis,
where y = 0). The curves y = 1

x and y = 3
x become v = 1

uv and v = 3
uv , which simplify into uv2 = 1

and uv2 = 3. If we solve for v we get v =
√

1
u and v =

√
3
u . That means we can take u ∈ [ 13 , 3] and

v ∈
[√

1
u ,
√

3
u

]
. The integrand xy becomes uv2.

xu = v

xv = u

yu = 0

yv = 1

|J | = (v)(1)− (u)(0) = v

dxdy = vdudv

Then we complete the change of variables.∫
D

xydA =

∫ 1

1
3

∫ √ 3
u

√
1
u

uv2vdvdu

=

∫ 1

1
3

u
v4

4

∣∣∣∣
√

3
u

√
1
u

du

=

∫ 1

1
3

u

4
(

9

u2
− 1

u2
)du

=

∫ 1

1
3

−2

u
du

= 2 ln |u|
∣∣∣∣1
1
3

= 2 ln 1− 2 ln
1

3
= −2 ln

1

3
= 2 ln 3
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For the same integral, we could have taken y = v and x = u
v . Under this transformation, the bounds

become u ∈ [1, 3] and v ∈ [
√
u,
√

3u]. The Jacobian is now 1
v and the integrand is u.∫

D

xydA =

∫ 3

1

∫ √3u

√
u

1

v
udvdu

=

∫ 3

1

u ln |v|
∣∣∣∣
√
3u

√
u

du

=

∫ 3

1

u(ln |
√

3u| − ln |
√
u|du

=

∫ 3

1

1

2
(u ln 3u− u lnu)du

=
1

2

(
1

4
u2(2 ln 3u− 1)

1

3
− 1

4
u2(2 lnu− 1)

)∣∣∣∣3
1

If we evaluate this, it will evaluate, eventually, to 2 ln 3. However, the result is obviously more compli-
cated. Different changes of variables can have very different effects on the integral; some will make it
easier, some more difficult. Also, the answers from different change of variables can look quite differet,
such as the expression above, while actually being the same value.

As an aside, there is a simplification in the second version of this example that removes the complication.
In the second last step, we could write ln 3u as ln 3 + lnu.

=

∫ 3

1

1

2
(u ln 3u− u lnu)du

=
1

2

∫ 3

1

u(ln 3 + lnu− lnu)du =
1

2

∫ 3

1

u ln 3du

=
ln 3

2

u2

2

∣∣∣∣3
1

=
ln 3

4
(9− 1) =

8 ln 3

4
= 2 ln 3

Example 2.5.8.∫
I

f(x, y)dA =

∫ 2

0

∫ 6

3

3x+ y

2x− y
dydx

x =
u+ v

5

y =
2u− 3v

5

J =

(
1
5

1
5

2
5

−3
5

)
|J | = −1

5

dydx =
−1

5
dudv

3x+ y

2x− y
=

3u+ 3v + 2u− 3v

2u+ 2v − 2u+ 3v
=

5u

5v
=
u

v
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The change of variables does indeed simplify the integrand, but what about the region of integration?
We know (x, y) ∈ [0, 2]×[3, 6]. Looking at the boundary linesx = 0 and x = 2 in the changes of variables
gives u + v = 0 and u + v − 10. Likewise, y = 3 and y = 6 give 2u − 3v = 15 and 2u − 3v = 30. The
resulting shape is a parallelogram with vertices (9, 1), (12,−2), (6,−6) and (3,−3). We would have to
split up the domain of integration into three pieces to evaluate this; the result may be a much longer
process than dealing with the original integral. Substitution may not always make things easier.

2.6 Polar Coordinates

We often use substitution in several variables to simplify the domain of integration instead of simplifying
the function. Polar coordinates are ideals for a domain of integration which has any kind of circular
symmetry: circles, wedges, arcs, etc.

The polar coordinate transformation is x = r cos θ and y = r sin θ with Jacobian |J | = r so that
dxdy = rdrdθ. (Notice this Jacobian also corrects units: dxdy has units of length squared, but θ
doesn’t have any units, so rdrdθ also has units of length squared.)

First, we need to understand what happens with constant bounds in polar coordinates. If r ∈ [0, R] and
θ ∈ [0, 2π], we integrate over a whole circle of radius R. Integrating over a wedge with radius R from
θ1 to θ2 is r ∈ [0, R] and θ ∈ [θ1, θ2]. Integrating over an annulus with radii R1 and R2 is r ∈ [R1, R2]
and θ ∈ [0, 2π]. Finally, over an arc in such an annulus is r ∈ [R1, R2] and θ ∈ [θ1, θ2].

Example 2.6.1. Consider the function f(x, y) = x+ y on the arc in the first quadrant between radii
2 and 4.∫

D

x+ ydA =

∫ π/2

0

∫ 4

2

r(cos θ + sin θ)rdrdθ

=

∫ π/2

0

r3

r
(cos θ + sin θ)

∣∣∣∣4
2

dθ

=
56

3

∫ π/2

0

(cos θ + sin θ)dθ

=
56

3
(sin θ − cos θ)

∣∣∣∣π/2
0

=
56

3
(1− 0− 0 + 1) =

112

3

Example 2.6.2. Now consider the function ex
2+y2 on the circle of radius R centered at the origin.

Notice here that the integrand also has circular symmetry – changing to polar coordinates will help
the integrand as well as the domain.

The integral is annoying in conventional Cartesian coordinates.∫
D

f(x, y)dA =

∫ R

−R

∫ √R2−x2

−
√
R2−x2

ex
2+y2dydx
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This is essentially impossible. However, in polar coordinates it improves greatly.∫
D

f(x, y)dA =

∫ 2π

0

∫ R

0

er
2

rdrdθ

=

∫ 2π

0

dθ

∫ R

0

er
2

rdr

= 2π
er

2

2

∣∣∣∣∣
R

0

=
2π

2
(eR

2

− 1) = π(eR
2

− 1)

Example 2.6.3. Now recall the integral we did to calcluate the volume of a sphere of radius R.

8

∫ R

0

∫ R2−x2

0

√
R2 − x2 − y2dydx

This was a trickly integral. If we change to polar coordinates, an integrate over the whole circle instead
of just a quarter, the integral improves.

A = 2

∫ 2π

0

∫ R

0

√
R2 − r2rdrdθ

= 2

∫ 2π

0

dθ

∫ R

0

√
R2 − r2rdrdθ

= 4π (R2 − r2)
3
2

2

3

−1

2

∣∣∣∣R
0

=
4π

3
(R2)

3
2 =

4πR3

3

Example 2.6.4. For the cone of height h and radius R, we had the following integral.∫
D

f(x, y)dA = 4

∫ r

0

∫ √r2−x2

0

(
h− h

r

√
x2 + y2

)
dydx

We didn’t even evaluate the cone volume integral before, but now we can use polar coordinates to
make it much more accessible.

A =

∫ 2π

0

∫ R

0

(
h− hr

R

)
rdrdθ

= 2π

(
hr2

2
− hr3

3R

)∣∣∣∣R
0

= 2π

(
hR2

2
− hR2

3

)
=
πR2h

3

Example 2.6.5. To show how some of these techniques work together, consider integrating the func-

tion f(x, y) = x2 over the ellipse D = x2

4 + y2

9 = 1.∫
D

x2dA
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We’re going to do two changes of variables. First we can take x = 2u and y = 3v. That has Jacobian
|J | = 6 so that dxdy = 6dudv. The ellipse D becomes the unit circle C.∫

C

(2u)26dudv = 24

∫
C

u2dudv

Then we change to polar coordinates to integrate over this circle.

24

∫
C

u2dudv = 24

∫ 2π

0

∫ 1

0

r2 cos2 θrdrdθ

= 24

∫ 2π

0

cos2 θdθ

∫ 1

0

r3dr

= 24

(
θ

2
+

sin 2θ

4

)∣∣∣∣2π
0

(
r4

4

)∣∣∣∣1
0

= 24π
1

4
= 6π

Example 2.6.6. Say we wanted to integrate the function x2 + y2 over the circle of radius 1 centered
at (1, 0). The integrand obviously lends itself to polar coordinates. There is circular symmetry in the
domain, but the offset is confusing.

The equation of such a circle is (x− 1)2 + y2 = 1. In polar coordinates this is r2 cos2 θ− 2r cos θ+ 1 +
r2 sin2 θ = 1, which simplifies into r2 − 2r cos θ = 0 or r = 2 cos θ for θ ∈ [−π/2, π/2]. We can take a
constant bound for θ and have θ be the outside variable. Then we can use the expression r = 2 cos θ
as an higher bound for r in terms of θ.∫

D

f(x, y)dA =

∫ π/2

−π/2

∫ 2 cos θ

0

1

r2
rdrdθ

=

∫ π/2

−π/2

r4

4

∣∣∣∣2 cos θ

0

dθ

= 4

∫ π/2

−π/2
cos4 θdθ

= 4
1

32
(12θ + 8 sin(2θ) + sin(4θ))

∣∣∣∣π/2
−π/2

=
1

8

(
12

(
π

2
− −π

2

))
+ 0 + 0 =

3π

2

Example 2.6.7. What if D is the circle of radius 2 excluding the circle of radius 1 centered at (1, 0)

and we want to integrate
√
x2 + y2 over this region? Here, we can think of the entire circle of radius

2 as D1 and the removed circle as D2; then the integral will be the integral over D1 subtracting the
integral over D2.
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The first part is an integral over D1.∫
D1

√
x2 + y2dA =

∫ 2π

0

∫ 2

0

rrdrdθ

= 2π
r3

3

∣∣∣∣2
0

=
16π

3

The second part is an integral over D2.∫
D2

√
x2 + y2dA =

∫ π
2

−π
2

∫ 2 cos θ

0

r2drdθ

=

∫ π
2

−π
2

r3

3

∣∣∣∣2 cos θ

0

dθ

=

∫ π
2

−π
2

(
8 cos3 θ

3

)
=

8

3

∫ π
2

−π
2

cos3 θdθ

=
8

3

(
1

3
(2 + cos2 +θ) sin θ

)∣∣∣∣π2−π
2

=
32

9

The result of the original integral is the difference of the two parts.∫
D1\D2

√
x2 + y2dA =

16π

3
− 32

9
=

48π − 32

9

2.7 Cylindrical and Spherical Coordinates

2.7.1 Cylindrical Coordinates

Cylindrical coordinates leave z unchanges and use polar coordinates in the xy-plane.

x = r cos θ

y = r sin θ

z = z

The Jacobian is J = r, using a 3× 3 determinant. We look to use cylindrical coordinates whenever a
region in R3 has some kind of cylindrical shape or symmetry.

Example 2.7.1. Say the region D is defined by x2 +y2 ≤ 4 and 1 ≤ z ≤ 5. This is a cylinder of radius
2 of height 4. Say we want to integrate the function f(x, y, z) = z

√
x2 + y2 over this cylinder.∫

D

z
√
x2 + y2dV =

∫ 2π

0

∫ 2

0

∫ 5

1

zrrdzdrdθ

=

∫ 2π

0

dθ

∫ 2

0

r2dr

∫ 5

1

zdz

= 2π
r3

3

∣∣∣∣2
0

z2

2

∣∣∣∣5
1

= 2π
24

2

8

3
= 64π
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Example 2.7.2. We could have set up the volume of a cone in cylindrical coordinates. If the cone
has height h and base radius R, and we set it opening upwards with its point at the origin, then we
have z ∈ [0, h] and the radius increases linearly with z as r = zR

h . In R3, we integrat 1 over the cone
to calculate its volume. The bounds for z are non-constant, so z must be the inside variable.∫

C

1dV =

∫ 2π

0

∫ h

0

∫ Rz
h

0

rdrdzdθ

= 2π

∫ h

0

r2

2

∣∣∣∣Rzh
0

dz

= 2π

∫ h

0

R2z2

2h2
dz

= 2π
R2

2h3
z3

3

∣∣∣∣h
0

= 2π
R2

2h3
h3

3
=
R3hπ

3

Example 2.7.3. Similarly, we can calculate the volume of a parabaloid this way. We orient it along the

z axis, opening upwards. If the parabaloid has height h and base radius R, then the radius if r = R
√
z√
h

.

By solving for z, we have z = hr2

R2 . The bounds for z are non-constant, so z must be the inside integral.∫
D

1dV =

∫ 2π

0

∫ R

0

∫ h

hr2

R2

rdzdrdθ

= 2π

∫ R

0

r

(
h− hr2

R2

)
dr

= 2π

(
hr2

2
− hr4

4R2

)∣∣∣∣R
0

= 2π

(
hR2

2
− hR4

4R2

)
= hR22π

(
1

2
− 1

4

)
=
hR2π

2

Example 2.7.4. Assume we have three cylinders of radius R along each axis in R3. What is the volume
of the intersection of all three cylinders? (This is called the tricylinder Steinmetz solid). Setting up the
geometry is difficult. We will integrate and height over the xy plane, and by symmetry, we can work
with one 16th of the shape: the portion that lies above one 8th of the circle above the axis. In the first
8th of the circle (θ ∈ [0, π/4]) in polar coordinates). The z-axis cylinder restricts us to the circle in the
xy-plane and the x-axis cylinder is lower than the y-axis cylinder over this particular 8th or a circle, so
the x-axis cylinder is the limit on height. What is that height function? The equation of the cylinder
is y2 + z2 = R2, so we have z2 = R2 − y2 = R2 − r2 sin2 θ, writing y in cylindrical coordinates. This
determines a region of integration and we proceed using cylindrical coordinates.
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V = 16

∫ π
4

0

∫ R

0

∫ √R2−r2 cos2 θ

0

rdzdrdθ

= 16

∫ π
4

0

∫ R

0

√
R2 − r2 cos2 θrdrdθ

= 16

∫ π
4

0

(
(R2 − r2 cos2 θ)

3
2

2

3

−1

2 cos2 θ

)∣∣∣∣R
0

dθ

=
16

3

∫ π
4

0

(
R3

cos2 θ
− (R2 −R2 cos2 θ)

3
2

cos2 θ

)
dθ

=
16

3

∫ π
4

0

(
R3 sec2 θ − R3 sin3 θ

cos2 θ

)
dθ

=
16R3

3

∫ π
4

0

(
sec2 θ − sin θ

cos2 θ
+ sin θ

)
dθ

=
16R3

3

(
tan θ +

−1

cos θ
− cos θ

)∣∣∣∣π4
0

=
16R3

3

(
1− 2√

2
−
√

2

2
− 0 + 1 + 1

)

=
16R3

3

(
3− 2

√
2 +
√

2

2
=

16R3

3

6− 3
√

2

2

)
= 8R3(2−

√
2)

2.7.2 Spherical Coordinates

Spherical coordinates use a spherical radius and two angles: φ as co-latittude and θ as longitude. The
ranges for the angles are φ ∈ [0, π] and θ ∈ [0, 2π].

x = r sinφ cos θ

y = r sinφ sin θ

z = r cosφ

The Jacobian is J = r2 sinφ, after a complicated 3×3 determinant. We use spherical coordinates when
the domain of integration has some kind of spherical shape or symmetry.
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Example 2.7.5. The easiest example is the volume of a sphere of radius R.∫
S

1dV =

∫ 2π

0

∫ π

0

∫ R

0

r2 sinφdrdφdθ

=

∫ 2π

0

dθ

∫ π

0

sinφdφ

∫ R

0

r2dr

= 2π (− cosφ)|π0
r3

3

∣∣∣∣R
0

= 2π(1 + 1)
R3

3
=

4πR3

3

Example 2.7.6. We can also calculate the volume of an eplipsoid.

x2

a2
+
y2

b2
+
z2

c2
= 1

We use a linear change of variables first:x = au, y = vb and z = cw The Jacobian is J = abc and the
ellipsoid E because a unit sphere S.∫

E

1dxdydz =

∫
S

abcdudvdw

Then, since a, b and c are constant, this just the volume of a sphere of radius 1.∫
E

1dxdydz =

∫
S

abcdudvdw = abc

∫
S

1dudvdw =
4πabc

3

Example 2.7.7. Consider a sphere of radius R. Inside this sphere is a cone with flare angle π/6,
where the tip of the cone is located at very bottom of the sphere and the cone opens up inside the
sphere. The cone, plus the portion of the sphere above the cone, gives a shape that is something like
an ice-cream cone; it’s a cone plus a spherically curved cap at the top of the cone. What is the volume
of this object?

If we put the centre of the sphere at (0, 0, R), then the vertex of the cone can be put at the origin. The
equation of such a sphere is

x2 + y2 + (z −R)2 = R2.

Since r2 = x2 + y2 + z2, this equation simplifies into r2 = 2Rz which is r2 = 2Rr cosφ or r = 2R cosφ.
This can be taken at the outside bound of the radius term, as φ ∈ [0, π/2] and θ ∈ [0, 2π]. The flare of
the cone is π/6, which restricts φ ∈ [0, π/6]. We integrate with these bounds for the volume, making
sure that r is an inside integral since its bounds depend on θ.
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∫
D

1dV =

∫ 2π

0

∫ π
6

0

∫ 2R cosφ

0

r2 sinφdrdφdθ

= 2π

∫ π
6

0

r3

3

∣∣∣∣2R cosφ

0

sinφdφ

= 2π

∫ π
6

0

8R3 cos3 φ sinφ

3
dφ

=
16πr3

3

(
− cos4 φ

4

)∣∣∣∣π6
0

=
16R3π

3

(
1

4
− 9

64

)
=

7πR3

12

2.8 Applications of Multiple Integration

We’ve already spoken about the general definition of the size of sets, but let’s remind ourselves. If S is
any integrable set in Rn, then the size of S is defined to be the integral of the constant function.

V (S) =

∫
S

1dV

There are many physical problems involving 3D objets with variable density where we desire to know
mass instead of volume.

Definition 2.8.1. If ρ(x, y, z) is a density function, integrable on a region S ∈ RR3, the mass of the
object S is found from by integrating the density function.

M(S) =

∫
S

ρdV

This can also be done in R2 for flat objects with variable density depending on only x and y. Such
objects are normally refered at laminae.

A similar interesting physical problem is the problem of centre of mass. The centre of mass of an rigid
object (or system) is the point in space where linear forces on the object can be accuratly modeled as
forces on a point-mass. In particular, forces on the centre of mass do not cause rotational acceleration.
The calculation of centre of mass involves the calculation of so-called first moments. These definition
vary by dimension. First we work with a lamina in R2.
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Definition 2.8.2. Let S be a region in R2 with density ρ(x, y). Its mass and first moments are defined
b the following integrals.

m =

∫
S

ρdA

Mx =

∫
S

yρdA

My =

∫
S

xρdA

Then the coordinates of the centre of mass are written (x̄, ȳ) and calculate from the moments.

x̄ =
Mx

m

ȳ =
My

m

If S is a solid region in R3 with density ρ(x, y, z), then its mass and first moments are defined by the
following integrals.

m =

∫
S

ρdV

Myz =

∫
S

xρdV

Mxz =

∫
S

yρdV

Mxy =

∫
S

zρdV

The coordinates of the centre of mass are written (x̄, ȳ, z̄) and calculated from the moment.

x̄ =
Myz

m

ȳ =
Mxz

m

z̄ =
Mxy

m

32



Centre of mass and first moments are important physical properties that deal with linear acceleration;
for the purpose of linear acceleration, the object acts like a point mass at the centre of mass. However,
there are also moments involved in rotational movement and acceleration. These are called second
moments or moments of intertia.

Let S ⊂ R2 be a laminae with density function ρ. Its second moments are calcaulted by the following
integrals.

Ix =

∫
S

y2ρdA

Iy =

∫
S

x2ρdA

I0 =

∫
S

(x2 + y2)ρdA

These moment measure the resistance to rotation: Ix is the resistance to rotation about the x axis; Iy
is the resistance to rotation about the y axis; and I0 is resistance to rotation about the origin. The
three radii of gyration are calcluated from the second moments.

¯̄R2 =
I0
m

¯̄x2 =
Ix
m

¯̄y2 =
Iy
m

The radii of gyration are similar to centre of mass for movement. The object acts as a point mass at
radius ¯̄R for rotation about the origin. Similar, it acts like a point mass at radius ¯̄x for rotation about
the x axis and radius ¯̄y for rotation about the y axis.

Let S be a solid object in R3 with density function ρ. Its second moments are calculated by the following
integrals.

Ix =

∫
S

(y2 + z2)dV

Iy =

∫
S

(x2 + z2)dV

Iz =

∫
S

(x2 + y2)dV

Its radii of gyration are calculated from the second moments.

¯̄x2 =
Ix
m

¯̄y2 =
Iy
m

¯̄z2 =
Iz
m
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The object acts like a point mass at (¯̄x, ¯̄y, ¯̄z) for purposes of rotational physics. More specifically, for

about the z axis, the particular acts as a point mass at radius
√

¯̄x2 + ¯̄y2, with parallel constructions
for the other two axes.

Example 2.8.3. Consider a quarter circle of radius a in the first quadrant with density function
ρ = k

√
x2 + y2. What is its centre of mass?

m =

∫ π
2

0

∫ a

0

krrdrdθ

=
π

2

kr3

3

∣∣∣∣a
0

=
πka3

6

x̄ =
1

m

∫ π
2

0

∫ a

0

yρdA =
1

m

∫ π
2

0

∫ a

0

kr3 sin θdrdθ

=
k

m

∫ π
2

0

sin θdθ

∫ a

0

r3dt

=
k

m
(− cos θ)|

π
2
0

r4

4

∣∣∣∣a
0

=
6

πa3
1
a4

4
=

3a

2π

ȳ =
3a

2π

We don’t have to calculate the second moment; x̄ = ȳ due to the symmetry of the situation. The centre
of mass is found at

(
3a
2π ,

3a
2π

)
.

Example 2.8.4. Now consider a lamina with y ∈ [−1, 1] and x bounded between ±y4 with ρ = 1.
What is the area and moment of intertia about the x-axis?

A =

∫ 1

−1

∫ y4

−y4
1dxdy

=

∫ 1

−1
2y4dy =

2y5

5

∣∣∣∣1
−1

=
4

5

Ix =

∫ 1

−1

∫ y4

−y4
y2dxdy

=

∫ 1

−1
xy2
∣∣y4
−y4 =

∫ 1

−1
2y6dy

=
2y7

7

∣∣∣∣1
−1

=
4

7

Compare this lamina to a rectangle of height 2 and width 2/5, which has the same area. We calculate
the moment of inertia for the rectangle.

Ix =

∫ 1

−1

∫ 1
5

− 1
5

y2dxdy =
4

15
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Our shape has twice the resitance to rotation, even though it has the same cross-section area. This
physical fact partially explains the use of I beams in construction: they have more resistance to twisting
and shear forces than a rectangular cross-section beam of the same size or weight.

Example 2.8.5. Now consider a hemisphere above the xy plane with radius a and density ρ = kz.
Let’s calculate its mass, centre of mass, and moments of inertia.

m =

∫ 2π

0

∫ π/2

0

∫ a

0

k(r cosφ)r2 sin2 φdrdφdθ

= 2πk

∫ π/2

0

r4

4

∣∣∣∣a
0

cosφ sinφdφ

=
2πka4

4

∫ π/2

0

sin 2φ

2
dφ

=
πka4

2

(
− cos 2φ

4

)∣∣∣∣π/2
0

=
πka4

8
(cos 0− cosπ) =

πka4

4

Myz = 0 due to symmetry.

Mxz = 0 due to symmetry.

Mxy =

∫
D

zρdV

=

∫ 2π

0

∫ π/2

0

∫ a

0

kr2 cos2 φr2 sinφdrdφdθ

= 2πk

∫ a

0

r4dr

∫ π/2

0

cos2 φ sinφdφ

=
2πka5

5

(
− cos3 φ

3

)∣∣∣∣π/2
0

=
2πka5

15

x̄ = 0

ȳ = 0

z̄ =
2πka5

15
πka4

4

=
8a

15
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The centre of mass is at (0, 0, 8a15 ) Let’s also calculate the moments of inertia.

Ix =

∫
D

(y2 + z2)ρdV =

∫
D

(y2 + z2)zkdV

= k

∫ 2π

0

∫ π/2

0

∫ a

0

r2(sin2 φ sin2 θ + cos2 φ)r cosφr2 sinφdrdφdθ

= k

∫ a

0

r5dr

∫ 2π

0

∫ π/2

0

(
sin3 φ cosφ sin2 θ + cos3 φ sinφ

)
dφdθ

=
ka6

6

[(
sin4 φ

4

)∣∣∣∣π/2
0

(
θ

2
− sin 2θ

4

)∣∣∣∣2π
0

+

(
− cos4 φ

4

)∣∣∣∣π/2
0

2π

]

=
ka6

6

[(
1

4
− 0

)
π2π

(
1

4
− 0

)]
=
πka6

8

Iy =
πka6

8
by symmetry

Iz =

∫
D

(x2 + y2)ρdV

= k

∫ 2π

0

∫ π/2

0

∫ a

0

r2 sin2 φr cosφr2 sinφdrdφdθ

=
2πka6

6

∫ π/2

0

sin3 φ cosφdφ

=
πka6

3

sin4 φ

4

∣∣∣∣π/2
0

=
πka6

12

¯̄x2 =
πka6

8
πka4

4

=
a2

2

¯̄x =
a√
2

¯̄y2 =
a2

2

¯̄y =
a√
2

¯̄z2 =
πka6

12
πka4

4

=
a3

3

¯̄z =
a√
3

The centre of rotation is at
(
a√
2
, a√

2
, a√

3

)
.
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Example 2.8.6. Now consider a parabaloid bounded by z = b(x2 + y2) with height h and density
ρ = 1. What are its moments of inertia? We will use cylindrical coordinates, but we need a bound on
the radius term at the height h. The equation of the parabaloid in cylindrical coordinates is z = br2

and when z = h, we see that r =
√

h
b . This is the outer bound on radius. With contstant bounds on

angle and radius, we can let z range from the parabaloid graph z = br2 to the constant height h.

m =

∫
R

1dV =
π
√

h
b

2

h

2
=
πh2

2b

Iz =

∫ 2π

0

∫ √h
b

0

∫ h

br2
(x2 + y2)rdzdrdθ

=

∫ 2π

0

∫ √h
b

0

∫ h

br2
r3dzdrdθ

= 2π

∫ √h
b

0

(
r3h− r5b

)
dr

= 2π

(
hr4

4
− br6

6

)∣∣∣∣
√

h
b

0

= 2π

(
h3

4b2
− bh3

6b3

)
=

2πh3

b2

(
1

4
− 1

6

)
=
πh3

6b2

¯̄z2 =
Iz
m

=
πh3

6b2

πh2

2b

=
h

3b

¯̄z =

√
h

3b
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Ix =

∫ 2π

0

∫ √h
b

0

∫ h

br2
(y2 + z2)rdzdrdθ

=

∫ 2π

0

∫ √h
b

0

∫ h

br2
(r2 sin2 θ + z2)rdzdrdθ

=

∫ 2π

0

∫ √h
b

0

r3 sin2 θ
(
h− br2

)
+ r

(
h3

3
− b3r6

3

)
drdθ

=

∫ 2π

0

r4

4
h sin2 θ − r6

6
b sin2 θ +

r2

2

h3

3
− r8

8

b3

3

∣∣∣∣
√

h
b

0

dθ

=

∫ 2π

0

h2

4b2
h sin2 θ − h3

6b3
b sin2 θ +

h4

6b
− h4b3

24b4
dθ

=
h3

b2

∫ 2π

0

sin2 θdθ

(
1

4
− 1

6

)
+

2πh4

b

(
1

6
− 1

24

)
=

h3

12b2

(
θ

2
− sin 2θ

4

)∣∣∣∣2π
0

+
3πh4

12b

=
h3π

12b2
+

3πh4

12b
=
h3π

12b

(
1

b
+ 3h

)
¯̄x2 =

h3π
12b

(
1
b + 3h

)
πh2

2b

¯̄x =

√
a2

6
+
h2

3
=
h

6

(
1

b
+ 3h

)
¯̄x =

√
h

6

(
1

b
+ 3h

)
¯̄y = ¯̄x by symmetry

As a final example for this section, we can prove a a nice theorem from physics.

Theorem 2.8.7. A body of uniform density under the action of a external conservative force (such a
gravity) acts like a point mass at its centre of mass.

Proof. We’ll just prove the theorem for the special case of a sphere. The force of gravity between two
masses m1 and m2 is

F =
Gm1m2

r2

Let’s assume the source of the gravitational attraction sits at (0, 0, c) where c > a is larger than a the
radius of the sphere. Let’s also assume that ρ is the constant density of the sphere. Then ρdV is an
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infinitesimal piece of mass in the sphere, and we can write ω for the distance from the infinitesimal
mass to the gravitational source.

The force on the infinitesimal mass is

FdV =
GmρdV

ω2
.

In polar coordinates, this is

FdV =
Gmρr2 sinφdrdφdθ

ω2
.

By symmetry of the sphere, all lateral forces will cancel. We only care about the z component of the
force. Let α be the angle from the z axis of the line from (0, 0, c) to the infinitesimal mass.

FzdV =
Gmρr2 sinφ cosαdrdφdθ

ω2

Let’s do some trigonometry. Consider the triange with vertices (0, 0, c), (0, 0, 0) and the location of our
infinitesimal mass. The angle at (0, 0, c) is α by definition, and likewise the angle at (0, 0, 0) is φ. The
side lengths are c, ω and r, also by definition. We use the cosine law.

ω2 = r2 + c2 − 2rc cosφ

ω =
√
r2 + c2 − 2rc cosφ

The length c along the x axis can be divided into two pieces, so that c = ω cosα+ r cosφ. We can solve
for cosα.

cosα =
c− r cosφ

ω

We can replace ω with the square root expression.

cosα =
c− r cosφ√

r2 + c2 − 2rc cosφ

We can replace both cosα and ωin the force expression.

FzdV =
Gmρr2 sinφ

r2 + c2 − 2rc cosφ

(
c− r cosφ√

r2 + c2 − 2rc cosφ

)
drdφdθ

The total force is this integral of this infinitesimal force over the sphere.

Fz =

∫ 2π

0

∫ π

0

∫ a

0

Gmρr2 sinφ

r2 + c2 − 2rc cosφ

(
c− r cosφ√

r2 + c2 − 2rc cosφ

)
drdφdθ

We’ll do some substitution here, more or less reversing the trigonometry. We leave r and θ along, but
write ω2 = r2 + c2 − 2rc cosφ with the cosine law as before.

2ωdω = 2rc sinφdφ =⇒ r sinφdφ =
ω

c
dω
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We have ω(0) = c− r and ω(π) = c+ r for the bounds. Finally, we can solve to get r cosφ = r2+c2−ω2

2c .
We use this as a substitution in the φ integral.

Fz =

∫ 2π

0

∫ π

0

∫ a

0

Gmρr

(r2 + c2 − 2rc cosφ)

(c− r cosφ)√
r2 + c2 − 2rc cosφ

(r sinφdφ)drdθ

=

∫ 2π

0

∫ a

0

∫ c+r

c−r

Gmρr

ω2

c− r2+c2−ω2

2c

ω

ω

c
dωdrdθ

=

∫ 2π

0

∫ a

0

∫ c+r

c−r

Gmρr

ω2

2c2 − r2 − c2 + ω2

2c2
ωdrdθ

=
2πGmρ

2c2

∫ a

0

∫ c+r

c−r
r

(
c2 − r2 + ω2

ω2

)
dωdr

=
πGmρ

c2

∫ a

0

∫ c+r

c−r
r

(
(c2 − r2)

1

ω2
+ 1

)
dωdr

=
πGmρ

c2

∫ a

0

r

(
(c2 − r2)

−1

ω
+ ω

)∣∣∣∣c+r
c−r

dr

=
πGmρ

c2

∫ a

0

(rc2 − r3)

(
1

c− r
− 1

c+ r

)
+ r(c+ r − (c− r))dr

=
πGmρ

c2

∫ a

0

−r(c2 − r2)(−2r)

c2 − r2
+ 2r2dr

=
πGmρ

c2
2r2 + 2r2dr

=
πGmρ

c2
4r2dr =

4πGmρa3

3c2
=
Gm

(
ρ4πa3

3

)
c2

The expression in brackets is the mass of the sphere and c is the distance from the centre of mass to
the gravitational sources. This is exactly the expression we wanted: it is the force due to a point mass
at the origin with mass equal to the total mass of the sphere.

In the previous example, the two masses were seperated from each other. We could instead consider
hollow sphere, with outside radius a and inside radius b, and a point mass at (0, 0, c) with c < b, so
that the point mass is inside the sphere. What is the force of gravity on that point mass? The set-up
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is almost the same; the only difference is that the bounds on ω are reversed in sign.

Fz =

∫ 2π

0

∫ b

a

∫ r+c

r−c

Gmρr(c2 − r2 + ω2)

2ω2c2
dωdrdθ

=
πGmρ

c2

∫ b

a

(r3 − rc2)
1

ω

∣∣∣∣r+c
r−c

+ rω

∣∣∣∣r+c
r−c

dr

=
πGmρ

c2

∫ b

a

r(r2 − c2)

(
1

r + c
− 1

r − c

)
+ 2rcdr

=
πGmρ

c2

∫ b

a

r(r2 − c2)
−2c

r2 − c2
+ 2rcdr

=
πGmρ

c2

∫ b

a

−2rc+ 2rcdr =
πGmρ

c2

∫ b

a

0dr = 0

Everything cancels out. We reach a fairly strange conclusion: no matter the location of a point mass
is inside a hollow sphere (of uniform density), it experiences no force of gravity.

2.8.1 Moments and Probability Distributions

Let’s recall some definitions about continuous probability.

Definition 2.8.8. A probability distribution on an integrable set D ⊂ Rn is a function ρ : D → [0,∞)
such that∫

D

ρdV = 1.

The set D is called the set of states; each point represents the state of the system. For any integrable
subset A ⊂ D, the probability that the state of the system is in the subset A is the integral over that
subset.

P (A) =

∫
A

ρdV

Definition 2.8.9. An integrable function f : D → R is called an observable or measurable; for each
state, an observable measure some property of that state. The expectation value of the observable f
is the continuous version of the average value of f over the state. It is written 〈f〉 and calculated by
integration.

〈f〉 =

∫
D

fρdV
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If D ⊂ R3, then D may be a domain of positions. These states are simply the possible places where a
particle may be found.

〈x〉 =

∫
D

xρdV

〈y〉 =

∫
D

yρdV

〈z〉 =

∫
D

zρdV

〈r〉 = 〈
√
x2 + y2 + z2〉 =

∫
D

√
x2 + y2 + z+2ρdV

The first three of these are the expectation values of each coordinate of position and the last is the
expectation value of the distance to the origin.

Alternatively, with D ⊂ R3, ρ could be an ordinay mass-density. We can think of this as the probability
of finding mass at each point in the set. In that context, 〈x〉, 〈y〉 and 〈z〉 are just the first moment
and the coordinates of the centre of mass. That also makes sense: the centre of mass is the ‘average’
location of the mass of the object.

The second moments are also expectation values. For example, 〈x2+y2〉 is the average (square) distance
from the z axis. Objects further away from the z axis are more difficult to rotate around that axis, so
this naturally measure the resistance to rotation around the z axis. Likewise for 〈x2 + z2〉 about the y
axis and 〈y2 + z2〉 about the x axis.

The use of the term ‘moment’ is historical. The entire subject of continuous probability can be developed
using the terminology of moments. For these notes, we’ll use the term ‘expectation value’ instead of
‘moment’.

Definition 2.8.10. The standard deviation of a observable is a measure of the width of the distribu-
tion. This can be expressed as the expectation value of the distance from the average. In practice, we
use the square of distance and calculate the square of standard deviation (much like the pythagorean
theorem). Let f be a observable. Its standard deviation σf is calculate by the following integral.

σ2
f =

∫
D

(f − 〈f〉)2ρdV

With some algebra, we can uncover some interesting properties of standard deviation.

σ2
f =

∫
D

(f − 〈f〉)2ρdV

=

∫
D

(f2 − 2f〈f〉+ 〈f〉2)ρdV

=

∫
D

f2ρdV − 2

∫
D

f〈f〉ρdV +

∫
D

〈f〉2ρdV

= 〈f2〉 − 2〈f〉
∫
D

fρdV + 〈f〉2
∫
D

ρdV

= 〈f2〉 − 2〈f〉〈f〉+ 〈f〉2 = 〈f2〉 − 〈f〉2

σ2
f = 〈f2〉 − 〈f〉2
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The last line above is an important identity for standard deviation and expectation values.

2.8.2 Quantum Mechanics

One of the most well-known applications of continuous probability is quantum mechanics. The whole
field is built on the assumption that states of physical systems are probabilistically determined and
that we should study the physics of the system by studying the probability distribution.

The state of a physical system in quantum mechnics is measured by a function Ψ, called a wave
function. Ψ itself is not exactly the probability density; quantum mechanics works with a C-valued
function, which adds another layer of confusion. With C-valued function, there is an operation called
complex conjugation, which changes the sign of the imaginary piece of the function. It is written with
a bar, so Ψ̄ is the conjugate. Then, expectation values in quantum mechanics are given by the following
integral, where D is the domain of states and f is a observable on that domain of states.

〈f〉 =

∫
D

Ψ̄fΨdV

All observables in quantum mechancs are calcualted from the wave function. Determining the behaviour
of the wave function over time is the goal of the discpline; that behaviour is given by the famour
Schrodinger equation. In this equation V is a potential energy function on the space of states, ~ is a
constant, m is the mass and ı is the imaginary number, with ı2 = −1.

ı~
∂Ψ

∂t
=
−~
2m
∇2Ψ + VΨ

We’ll assume that Ψ(x, t) has only one variable of position. (The following derivation works in three
variables of position with roughly the same steps, but the notation becomes much more challenging).
The expectation value for position is 〈x〉. What is momentum? It should be (up to a mass term) the
rate of change of position. But the only available sense of position is the expectation value. Therefore,

we should try to calculate ∂〈x〉
∂t . We use the compatibility of integration and differentiation to exchange

the operations. (There are theorems, which we’ve omitted in this course, which allow this exchange).

∂〈x〉
∂t

=
∂

∂t

∫
R

Ψ̄xΨdx =

∫
R

∂

∂t
xΨ̄Ψdx =

∫
R
x
∂

∂t

(
Ψ̄Ψ
)
dx

We need to calculate this derivative term. We make use of the Schrodinger equation to change the time
derivatives into space derivatives.
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∂

∂t

(
Ψ̄Ψ
)

= Ψ̄
∂

∂t
Ψ + Ψ

∂

∂t
Ψ̄

= Ψ̄
1

ı~

[
−~2

2m

∂2

∂x2
Ψ + VΨ

]
+ Ψ
−1

ı~

[
−~2

2m

∂2

∂x2
Ψ̄ + V Ψ̄

]
=

ı~
2m

Ψ̄
∂2Φ

∂2x
− ıV ΦΦ̄

~
− ı~

2m
Ψ
∂2Φ̄

∂x2
+
ıVΨΨ̄

~

=
∂

∂x

[
ı~
2m

(
Ψ̄
∂Ψ

∂x
− ∂Ψ̄

∂x
Ψ

)]
d〈x〉
dt

=
ı~
2m

∫
x
∂

∂x

(
Ψ̄
∂Ψ

∂x
− ∂Ψ̄

∂x
Ψ

)
dx

Integrate by parts.

=
ı~
2m

x

(
Ψ̄
∂Ψ

∂x
− ∂Ψ̄

∂x
Ψ

)∣∣∣∣∞
−∞
− ı~

2m

∫ (
Ψ̄
∂Ψ

∂x
− ∂Ψ̄

∂x
Ψ

)
dx

The evaluation terms decays to 0 due to normalization limits.

Integrate by parts again. Half the terms cancel.

=
−ı~
m

∫
Ψ̄
∂Ψ

∂x
dx =

~
ım

∫
Ψ̄
∂Ψ

∂x
dx

〈p〉 =
d〈x〉
dt

=

∫
Ψ̄
~
ı

∂

∂x
Ψdx =

〈
~
ı

∂

∂x

〉
This is something new: the expectation value of an operator instead of a function. This is well defined
because the operator acts on the wave function. We are led to a general correspondence.

Expectation Values → Operators on Wave Functions
Position → Multiplication by x

Momentum → Operator ~
ı
∂
∂x

Any observable in quantum mechanics can be reduced to an operator F on the space of wave functions.
Its expectation value is its integral.

〈F 〉 =

∫
D

Ψ̄(FΨ)dV

Moreover, all operators in quantum mechanics can be derived from combination of the position and
momentum opreators.

2.8.3 The Uncertainty Principle

The study of quantum mechanics thus becomes the study of operators on wave functions. This is
a mathematically intense study, leading to whole new branches of mathematics focused on operator
algebra. One of the first and most important question concerning operator is this: given two operators,
do they commute? That is, if F and G are operators, is F (GΨ) = G(FΨ)?
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Definition 2.8.11. For any objects with multiplication a and b, the commutator bracket is defined as

[a, b] = ab− ba.

The two items commute if and only is [a, b] = 0.

We use the commutator bracket to study the commutativity of operators. In studying operator algebra
and continuous probability, we can derive the following inequality. (We don’t have the time or machinery
for the proof, unfortunately).

Theorem 2.8.12. Let F and G be operators on wave functions.

σFσG ≥
1

2i
〈[F,G]〉

The commutator bracket is still an operator, so it has an expectation value. Let’s look at position and
momentum, to see if they commute. Let f be a test function (something to act upon, for an operator).[

x,
~
ı

∂

∂x

]
f = x

~
ı

∂f

∂x
− ~
ı

∂

∂x
(xf)

= x
~
ı

∂f

∂x
− x~

ı

∂f

∂x
− ~
ı
f

=
−~
ı
f

[x,
~
ı

∂

∂x
] =
−~
ı

= ı~

So we know the commutator of position and momentum. What is its expectation value?

〈ı~〉 =

∫
Ψ̄ı~Ψdx = ı~

∫
Ψ̄Ψdx = ı~

This makes some sense: this operator is simply multiplication by a constant; it doesn’t change the wave
functions at all. It’s expectation is simply itself – it is a constant.

Then we apply the theorem to get the next result, where x stands for position and p for momentum:

σxσp ≥
~
2
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What does this mean? The σ is the standard deviation: it measures how wide the probability is for
each of the measurements. This can be thought of as error. If a σ is very small, we have a very precise
observable. If σ is large, the possible values in a reasonable probabity are much larger. The product
of these two σ is the product of the uncertain in our measurement of position and moment. This
is the famous uncertainty princple. Because the operators do not commute, we can’t measure them
both precisely at the same time. That fact comes directly the the operator mathematics; this makes it
intrinsic to this quantum mechanical model. The uncertainly is not a problem of measurement, but a
mathematical fact of the systems.

This can be thought of in terms of particple/wave duality. A particle, as a probability distribution,
is just a single peak. A wave, as a probability distribution, has a sinusoidal graph. Momentum is
essentially wavelength in this interpretation. A particple has a definite position: the single peak is
located somewhere. However, with no repetition, it has no wavelength. A wave has a wavelength,
but since the graph extends outward, it has no fixed position. The uncertainly principle reflects how
elementary objects have both wave and particple like behaviour, one to the exclusion of the other.

This commutator analysis works for all operators. Two operators are compatible observables if they
commute. If they do not, a version of the uncertainly princples holds for them.

We are led to some of the standard philosophical problems of measurement in QM. What does a
measurement do? Why does it collapse a wave function? Is it human observation? Machine observation?
Consciousness?

Historically, there were three main camps. The Realist camp calimed that things existed in reality and
that probability is an illusion and weakness of the model. The Orthodox camp said that nothing exists
before a measurement. The system is a probability–nothing more or less. The Agnostic camp said that
before measurement, any such question is meaningless, since measurement is all we have to interact
with the universe. Many feel that none of the three answers are entirely satisfactory and the mystery
of quantum mechanics remains with us.
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Chapter 3

Vector Calculus

3.1 Vector Fields

So far, we studies scalar fields f : Rn → R. When defining derivatives of various types, we only
considered single-valued functions. In multiple integration, the integrands were functions with a single
real output.

We have mentioned functions F : Rn → Rm a few times, but only as transformations of spaces. . Those
who have taken Linear Algebra are familiar with linear functions Rn → Rm, which are encoded in
m× n matrices. We used functions F : Rn → Rn as change of variables transformations for integrals.
Their Jacobian matrices J(F ) were square n× n matrices, so we could take the determinant to define
the Jacobian |J(F )|, which acted as a measure of the change in local size/area/volume for the purposes
of integration.

Interpreting functions F : Rn → Rm as transformations of space is very useful and valuable. It connects
well with linear algebra, where matrices are thought of as transformations. It serves multiple integration
by allowing coordinate transformations. However, it is not the only conceptual way to understand such
functions. We are now going to re-interpret these functions F : Rn → Rm as vector fields.

The use of the work ‘field’ here refers to a function on subsets of Rn. So far, we have worked with
scalar fields, functions f : Rn → R. On Rn (or a subset), these functions output scalars. Conceptually,
any scalar quantity that might differ throughout a three-dimensional region is a scalar fields. Familiar
examples are temperature, pressure, concentration of some material in a solution, density, and elevation.
Now we define the other type of field.

Definition 3.1.1. A function on a region of S ⊂ Rn which outputs vectors is a vector field. If the
output are m-vectors, we write f : S → Rm.
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Figure 3.1: The Vector Field F (x, y) = (0, 1)

Familiar examples are force, movement, acceleration, wind speed, ocean current speed, fluid flow, or
the gradient of any differentiable scalar field. All these can vary over a region of space but need to be
represented by a vector: by a magnitude and a direction.

Vector fields rely on the idea of local coordinates: the vector output is always a direction as if the
current location is a local origin.

Example 3.1.2. Consider the constant vector field F (x, y) = (0, 1) on R3, as seen in figure 3.1. The
vector (0, 1) is a unit vector in the vertical y-axis direction in R2. This vector fields associates that unit
vertical vector to each point in R2 (in local coordinates). At each point, the vector points vertically
upward from that point. If this field represented a fluid flow, the fluid would be flowing upwards (in
y) at a uniform pace everywhere, following these local direction vectors.

Definition 3.1.3. If F : Rn → Rn is a vector field, then we can write F = (F1, F2, . . . , Fn) in terms
of its components. Each component Fi is itself a scalar field, has partial derivatives and gradients, and
is subject to all the tools we already have for scalar fields.

We can also use all the tools of vector analysis to understand vector fields. If F : Rn → Rn is a vector
field, then |F | is the length of each vector. F

|F | is the unit vector in each direction of F as long as |F |
is not zero. If G is another vector field, then we can calculate the scalar field F · G at each point. If
n = 3, we can also calculate F × G. If f : Rn → R is a scalar field, then the multiplication fF is a
scalar multiplication of the vector F on each point in the domain of both functions. F +G and F −G
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Figure 3.2: The Vector Field Describing Gravitational Force

are also vector fields, formed by adding or subtracting vectors. The expression FG doesn’t make any
sense, since we can’t multiply vectors.

Example 3.1.4. An excellent example of a vectors field is the force of gravity, shown in Figure 3.2.
The magnitude of the force of gravity per unit mass due to a mass M at the origin is a scalar field.
(x, y, z) is:

f =
MG

x2 + y2 + z2

However, the force itself also includes direction, so it is a vector field.

F =
MG

(x2 + y2 + z2)
3
2

(−x,−y,−z)

The direction (−x,−y,−z) is back towards the origin. We can recover the magnitude by taking the
length of the vector.

|F | = MG

(x2 + y2 + z2)
3
2

√
x2 + y2 + z2 =

MG

x2 + y2 + z2
=
MG

r2

3.2 Integral Curves

If we interpret a vector field as a fluid flow, imagine a bouyant object floating in the flow. Moving with
the flow, what path would the boyant object take? More mathematically, given the arrows of direction
of a vector field, can we find parametric curves γ(t) which follow these arrows? What does follow mean?
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(a) Just The Vectors (b) The Integral Curves

Figure 3.3: The Vector Field F (x, y) = (−y, x)

Definition 3.2.1. Let F : S → Rm be a vector field on a region S ⊂ Rn. If there exists a family
(depending on some variable a ∈ Rk) of parametric curves γa such that, over the whole family, γ′(t) =
F , then these parametric curves are called the integral curves of the vector field. That is, the tangents
of the parametric curves are the same as the vector field everywhere. Equivalently, a parametric curve
γ(t) is an integral curve for a vector field F if γ′(t) = F (γ(t)).

Example 3.2.2. Consider the vector field F (x, y) = (−y, x), as shown in Figure 3.3, with its integral
curves. These integral curves of F (x, y) = (−y, x) aren’t surprising. Looking just at the vector fields,
we can clearly tell that the fluid is travelling in a circular paths. Mathematically, the circles are curves
γ(t) = (a cos t, a sin t) for a parameter a > 0. We can calculate γ′(t) = (−a sin t, a cos t) = (−y, x). In
terms of the curve coordinates, these tangents are exactly the vector field.

Example 3.2.3. Let F (x, y) = (x, y), as in Figure 3.4. The curves γ(t) = (aet, bet) where a, b ∈ R are
integral curves. They have x = aet and y = bet, and we can calculate tangents: γ′(t) = (aet, bet) =
(x, y).

Integral curves are a very powerful conceptual tool. However, they are usually very hard to calculate
and most examples are beyond the scope of this course. However, there will be a few we can attempt.
I’ll describe the general process in R3.

If F = (F1, F2, F3) is a vector field and γ(t) = (γ1, γ2, γ3) is a parametric curve, then γ is an integral
curve if it satisfies the following system.

γ′1(t) = F1(γ1, γ2, γ3)

γ′2(t) = F2(γ1, γ2, γ3)

γ′3(t) = F3(γ1, γ2, γ3)

50



(a) Just The Vectors (b) The Integral Curves

Figure 3.4: The Vector Field F (x, y) = (x, y)

This is a system (generally non-linear) of three differential equations in three functions, the γi. Even
if it is linear, this is still a difficult system to solve, if not impossible. Even a simple field such as
F (x, y, z) = (y, z, x) leads to a difficult system.

γ′1 = γ2

γ′2 = γ3

γ′3 = γ1

Currently, we have no method for approaching this system. The solution would be a function which
is its own third derivative, and we are not currently aware of any such functions. However, there are
some approach examples with reasonable systems of equations.

Example 3.2.4. Let F = (x, y, z).

γ′1 = γ1 =⇒ γ1(t) = aet

γ′2 = γ2 =⇒ γ2(t) = bet

γ′3 = γ3 =⇒ γ3(t) = cet

Example 3.2.5. Let F = (1, 2x, 3y).

γ′1 = 1

γ′2 = 2γ1

γ′3 = 3γ2
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This can be solved iteratively.

γ1 =

∫
1dt = t+ a

γ2 = 2

∫
γ1dt =

∫
2t+ 2adt = t2 + 2at+ b

γ3 = 3

∫
γ2dt =

∫
3t2 + 6at+ 3bdt = t3 + 3at2 + 3bt+ c

γ(t) = (t+ a, t2 + 2ta+ b, t3 + 3at2 + 3bt+ c)

3.3 Vector Operations on Vector Fields

Recall the gradient ∇f of a scalar field f . It’s useful to recall the definition of the operator ∇. (stated
in R3 for convenience).

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
If f is a scalar field, then the gradient ∇f is a vector field describing the direction of greatest change.
We didn’t investigate it’s propreties as a vector field in Calculus III, but it was the first vector field we
used.

There are new operators we can define using ∇ on vector fields F . ∇ operates a vector, since is has
components which are differential operators. Therefore, we use vector notation involving ∇.

Definition 3.3.1. Let F : R3 → R3 be a vector field. The curl of F is defined as the the cross product
of ∇ and F . Note that this outputs a new vector field, not a scalar field.

∇× F =

(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y
,

)

Curl measures the tendency of the vector field to cause local rotation. If we think of the vector field as
a fluid flow and if we drop an object in the fluid, it will flow along the integral curves of the vector field.
However, as it flows along, it may also start spinning about its own axis. Curl measure the tendency of
the vector field to cause such a spin. (This is very different from global rotation. The paths of rotation
themselves may be circular without actually causing the object itself to spin. Likewise, the paths can
be totally straight but still cause rotation.)

Definition 3.3.2. A vector field with zero curl is called irrotational.

Example 3.3.3. Consider F (x, y, z) = (y, 0, 0). This is a field which moves objects in the x direction,
but the speed of movement varies with the y coordinate. The curl is ∇ × F = (0, 0,−1). This field
causes a clockwise rotation about the z axis; as particles in the fluid move in the x direction, they start
spinning around a vertical axis.
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Definition 3.3.4. Let F : Rn → Rn be a vector field in any dimension. The divergence of F is the
dot product ∇ · F . Note that this outputs a new scalar field, not a vector field.

∇ · F =
∂F1

∂x1
+
∂F2

∂x2
+ . . .+

∂Fn
∂xn

The divergence measure the tendency of a vector field to diffuse. Thinking in terms of gaseous fluids, a
positive divergence at a point means that the density of the gas is decreasing. Some directions of flow
may be inward and some outward, but there is a net diffusion of the gas. If the divergence is negative,
the density is increasing and there is a net gathering of the gas.

Definition 3.3.5. A vector where where the divergence is zero is called incompressible.

Many liquids are incompressible, at least locally and under reasonable energy circumstances. Water is
usually treated as an incompressible fluid. The major difference in fluid dynamics between gases and
liquid is compressibility.

Definition 3.3.6. Let f be is a scalar field Rn → R. It’s Laplacian is the divergence of its gradient:
∇ · (∇f) = ∇2f . Note that this outputs a scalar field.

The Laplacian was mentioned in the previous term, since the input and output are both scalar fields.
However, the intermediate state (the gradient) is a vector field, and the second part of the operation
(the divergence) is a vector operation. This persepctive of the Laplacian is quite useful.

The Laplacian is very important for many differential equations in physics. As the divergence of the
gradient field, it measures where the scalar field leads to a gathering or spreading. In a potential energy
field, it measures the sources (attractors) and repellors which generate the field.

There were two important differential equations introduced in Calculus III: the heat equation and the
wave equation. Extending these DES to several dimensions uses the Laplacian. Recall the 1-variable
and multi-variable versions of those two equations.

∂f

∂t
= α

∂2f

∂x2

∂2f

∂t2
= α

∂2f

∂x2

Replacing the 1-variable position derivative with a multivariable Laplacian extends these DEs to several
variables.

∂f

∂t
= α∇2f

∂2f

∂t2
= α∇2f
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We’ve also seen the Laplacian in the Schrödinger equation and the Navier-Stokes equation as the space
derivative term.

In the wave equation, if ∇2f = 0 then ∂2f
∂t2 = 0. Therefore, f has, at most, a linear dependence in t.

Since the dependence in x is often sinusoidal, a common solution here is a standing wave or a wave with
constant velocity. This (among other, more confusing reasons) leads to the terminology of harmonic
functions.

Definition 3.3.7. A scalar field f is harmonic if ∇2f = 0

The harmonic condition is a very restrictive condition. In particular, harmonic functions satify a
maximum modulus principle: if f has an strict extrema in an open set, then it has a point with
non-zero Laplacian and cannot be harmonic. Therefore, the extrema of f must always come on the
boundary of any open set. In complex analysis, all differentiable (holomorphic) functions are harmonic;
this fact leads to very different behaviour between real and complex differentiable functions.

3.3.1 Interaction between Vector Operations

All uses of ∇ are linear.

Proposition 3.3.8. Let f and g be scalar fields on R3, and let F and G be vector fields on R3. Let a
and b be constants. Then:

∇(af ± bg) = a∇f ± b∇g
∇× (aF ± bG) = a(∇× F )± b(∇×G)

∇ · (aF ± bG) = a(∇ · F )± b(∇ ·G)

∇2(af ± bg) = a∇2f ± b∇2g

In the previous identity (and similar identities), pay careful attention to which outputs are scalar fields
and which are vector fields.

Since ∇ is a differential operator, it doesn’t distribute over multiplication. However, there are several
generalizations of the Leibniz rule.

Proposition 3.3.9. Let f be a scalar field on R3 and let F and G be vector fields on R3.

∇ · (F ×G) = (∇× F ) ·G− F · (∇×G)

∇ · (fF ) = f(∇ · F ) + (∇f) · F
∇× (fF ) = f(∇× F ) + (∇f)× F
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In the first Leibniz rule we have a difference instead of the expected sum. In general versions of the
Leibniz rule, this negative sign is quite common. Many versions of the rule have (−1)k for some k,
showing that it is equally easy to have a sum or difference.

There are two important results about composition of vector operations.

Proposition 3.3.10. Let f be a scalar field on R3 and F a vector field on R3. Then ∇× (∇f) = 0:
the curl of a gradient is zero. Also, ∇ · (∇× F ) = 0: the divergence of a curl is zero.

This proposition is easy to prove by just calculating all the terms and using the compatibility of order
in mixed second partial derivatives. The proofs are left as exercises.

This proposition is also a glimpse of a very general result in analysis. If we work with the right
definitions, applying the same (or similar) differential operator twice in a row should give the zero
operator. Obviously, this isn’t always true: partial derivatives certainly don’t satisfy this, and even for
∇, ∇ · ∇f 6= 0 for a general scalar field. Near the end of these notes, we will give a general structure
for understanding why differential operators should compose to zero.

Example 3.3.11. Consider the scalar field f(x, y) = ln(x2 + y2), which is defined everywhere except
the origin.

∇f =

(
2x

x2 + y2
,

2y

x2 + y2

)
∇2f =

2

x2 + y2
− 4x2

(x2 + y2)2
+

2

x2 + y2
− 4x2

(x2 + y2)2
= 0

This is a harmonic scalar field. In particular, it can have no extrema on an open set. Values approach
−∞ near the origin and ∞ as we get very far from the origin.

Example 3.3.12. Consider the vector field F (x, y, z) = (−z, x,−y). ∇×F = (−1, 1, 1), so the vector
field causes the same local rotation at all points, about the axis (−1, 1, 1) (as a local axis direction).
∇ · F = (0, 0, 0), so the flow is incompressible. This is a good field to potentially model a liquid flow
that induces a particular local rotation everywhere.

Example 3.3.13. Consider the vector field F (x, y, z) = (x2, y2, z2). ∇× F = (0, 0, 0), so the field is
irrotational. The divergence is ∇·F = (2x+ 2y+ 2z). In the positive octant, the flow accelerates away
from the origin, so the rate of difussion increases away from the origin In other octants, we may have
negative divergence, reflecting the fact that the local vector field directions are always positive.

Example 3.3.14. Consider the vector field F (x, y, z) = (−y, x, 0) (which should be fairly familiar by
this time). ∇ × F = (0, 0, 2), which shows the creation of local rotation about the z axis. Note that
this is local rotation, which is seperate from the global rotation of the integral curves about the origin.
Also, ∇ · F = 0, so the flow is incompressible. As the flow spins around, it neither collects or diffuses
anywhere.

Example 3.3.15. Consider the vector field F (x, y, z) = (sinx, cos y, 0). ∇× F = (0, 0, 0), so the flow
is irrotational. This is interesting, given the trigonometric term; trigonometry might cause us to expect
spin. ∇·F = cosx− sin y, so there are various areas of diffusion and collection. The trigonometric term
here causes diffusion/collection, not rotation.
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Example 3.3.16. Consider the vector field F (x, y, z) =
(

1
x+y ,

1
x+y , 0

)
.∇×F =

(
0, 0, −1

(x−y)2 −
−1

(x+y)2

)
:

this curl is always negative and always about the z axis. ∇ · F = −1
(x+y)2 + 1

(x−y)2 : therefore, F collects

when x and y are dissimilar and diffuses when x and y are quite close.

3.4 Conservative Vector Fields

An important class of vector fields are gradients of scalar fields. The most common case is a potential
energy scalar field, where f measures potential energy. A principle of motion in physics states that
particles will seek to lower their potential energy in the most efficient way possible. That is, they will
move in the direction of greatest descent of potential energy. That movement is precisely along the
integral curves of the vector field ∇f . So, if we try to explain a physical situation by a potential energy
field, then the movement of particles is equivalent to finding integral curves of ∇f . Moreover, movement
along these paths creates kinetic energy. The speed of movement can be determined by conservation
of energy: the movement along the paths has speed and kinetic energy gained at exactly the same rate
as potential energy is lost. Conservation of energy explains the terminology of this section.

Definition 3.4.1. Let f be a scalar field. Then field ∇f created from a potential energy field is called
a conservative vector field.

If we are given a general vector field F , we would like to check whether or not it is conservative. We
have the identity ∇×∇f , which shows that all conservative fields are irrotational. Is the converse true?
We need a technical definition before we can answer this question.

Definition 3.4.2. Let U be an open subset of Rn. U is called path connected if there is a parametric
curve connecting any two points a, b ∈ U . (Recall in our definition in Calculus III that parametric
curves are always continuous.) If U is path connected, it is also called simply connected if any closed
path (a path which starts and ends at the same spot) can be contracted down to a point. (Think of the
path as a loop in a rope, and contraction as pulling the rope so that the loop disappears. This needs
to happen in such a way that all the intermediate steps are still paths in the set U).

Näıvely, a simply connected set has no holes in it. A solid cylinder is simply connected. However, the
hollow cylinder is not, since a loop around the cylinder can never be contracted.

Proposition 3.4.3. Let U be a simply connected open set in R3 and let F : U → R3 be a differentiable
vector field Then F is conservative on U if an only if ∇× F = 0.

The condition ∇×F works both ways under a reasonable condition for the domain of the vector field.
We can check if a vector is conservative by taking the curl; if the curl is zero, it is conservative.

If F is conservative, then there exists at least one (in fact, infinitely many!) scalar fields f with F = ∇f .
This f , inspired by the physics situation, is called a (scalar) potential for F . If f is a potential energy

56



field, F is the associated field of force. Usually, both the potential energy and force fields are defined
per unit mass or charge, so that they can act on any mass or charge present in the field.

How do we calculate f? The equation F = ∇f can be expanded.

F1 =
∂f

∂x

F2 =
∂f

∂y

F3 =
∂f

∂z

We can integrate each of these equations. We have to be careful with the ‘constants’: in each integral,
the constants can be functions of both of the remaining variables.

f =

∫
F1dx+ g1(y, z)

=

∫
F2dx+ g2(x, z)

=

∫
F3dx+ g3(x, y)

Finding f amounts to finding a scalar field that fits this system. For reasonable F , this isn’t too terrible.
We expect a family of solutions: since we are integrating and there will be constants of integration
introduced. Initial values can determine the constant to give a unique potential. The constants here
make sense: potential energy is always a relative measure, so we have to set a base level of potential
energy. Please note: energy is always relative! Unlike mass and charge, energy is not an intrinsic
measure. Energy is a fiction, but a very useful fiction for explaning motion.

3.5 Line Integrals of Vector Fields

As the start of this course, We integrated scalar fields over various regions in R3. Now that we have
defined vector fields, we can ask if there is a reasonable definition for integration of a vector field. This
seems like an odd question: integrating scalar fields, such a density, made sense. What does it mean to
integrate a vector field?

We will start with integrating along a parametric curve. If we think of the vector field as a force field,
then the integral of the vector field along the path will be interpreted as the work to move through
the field. Alternatively, we can interpret the line integral as the work that the field accomplished to
move the object. (The sign of the vector field can be changed to accomodate this variable perspective:
working with or working against the field.)

If F represents resistance to movement, like walking into the wind, then we look at the vectors as
directions pushing with or against the movement. If γ is movement through a vector field, then its
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local direction at any moment is its tangent γ′(t). To determine whether or not we are moving into
the wind, with the wind, or sideway through it, we have to compare the vector field and the tangent.
We use dot product: F · γ′(t) is large if the vectors share a direction and zero when the vectors are
perpendicular.

However, we want this integral to only depend on the path, not the parametrization. Therefore, we
should use attributes of the curve which are not dependant on the parametrization. The unit tangent
T (s) is one such attribute (in terms of the arclength parameter s. F · T measures the interaction of
the movement along the curve with the vector field. The arclength infinitesimal ds is independent of
parametrization. We use these tools to give the definition.

Definition 3.5.1. The line integral of a vector field F along a path γ(s) : [0, L]→ Rn is the integral
of the scalar F (γ(s)) · T (s) along the length of the curve.∫

γ

F · Tds =

∫
γ

F · ds :=

∫ L

0

F (γ(s)) · T (s)ds

The first notation is more complete, but the shorter second notation is conventional.

Using the arclength parameter for the definition if appropriate but inconvenient for calculation. Let γ(t)
be an arbitrary parametrization. Then we can think of s(t) (the arclenth of the curve in terms of t) as
a substitution of single variable integration. This substitution has ds = |γ′(t)|dt and T = γ′(t)/|γ′(t)|,
and the new bounds are 0 and L, the length of the curve. We can then transform the integral in the
definition.∫

γ

F · Tds =

∫ L

0

F (γ(s)) · T (s)ds =

∫ b

a

F (γ(t)) · γ
′(t)

|γ′(t)|
|γ′(t)|dt =

∫ b

a

F (γ(t)) · γ′(t)dt

The line integral measures the work or effort it takes to move along the path through the vector field.
It integral doesn’t depend at all on the speed of moving through the vector field, since it is independent
of the parametrization. The line integral is positive if it generally goes with the direction of the field
and negative if it generally goes against. Since moving with F is positive and moving against F is
negative, we sometime will want to replace F with −F when we want to think of working against the
field as positive work.

Example 3.5.2. Let’s do a classic example: the force of gravity. We’ve already discussed the field (per
unit mass) generated by a mass M at the origin.

F =
GM√

(x2 + y2 + z2)3
(−x,−y,−z)

We’re going to reverse the sign here, since we want to do positive work when we go against gravity.

F =
GM√

(x2 + y2 + z2)3
(x, y, z)
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Let’s take an outward path γ(t) = (t, t, t) for t ∈ [a, b] and b > a > 0. Then

γ′ = (1, 1, 1)

F (γ(t)) =
GM√
(3t2)3

(t, t, t)

F (γ(t)) · γ′(t) =
3tGM

3
√

3t3
=

GM

t2
√

3∫
γ

F · ds =

∫ a

b

GM

t2
√

3
=
GM√

3

∫ b

a

1

t2
dx

=
GM√

3

−1

t

∣∣∣∣b
a

=
GM√

3

(
1

a
− 1

b

)
=
GmM(b− a)

ab
√

3

If the distances a and b are large, but a and b are close to each other, then the change a − b is much
more significant than the change in the term ab in the denominator. If we call g = GM√

3ab
and pretend

this is locally constant, the line integral (approximately) evaluates to g(b− a). Recall we were working
with force per unit mass, so if we act on a mass m we get a change in potential of mg(b− a). This is
the familiar high-school physics result of mgh, the increase in potential energy, here h is the change
in height and g the local acceleration due to gravity. (Proving that our expression for g is the local
acceleration due to gravity is a little tricky, but we can see, using the fact that G has units m3/(kg ·s2),
that the units of g are m/s2, so it is an acceleration term).

Example 3.5.3. For another example, consider the rotational flow F (x, y) = (−y, x) and γ(t) the
counterclockwise circle (r cos t, r sin t) for t ∈ [0, 2π].

γ′(t) = (−r sin t, r cos t)

F (γ(t)) = (−r sin t, r cos t)

F (γ(t)) · γ′(t) = r2 sin2 t+ r2 cos2 r = r2∫
γ

F · ds =

∫ 2π

0

r2dr = 2πr2

The work to more around the circle (with the vector field) of radius r is 2πr2. Since it is positive and
follows the integral curve, we can think of it as the work the field accomplished to move the object
along its integral curve.

3.5.1 Fundamental Theorems

Let’s return to a version of the Fundamental Theorm of Calculus. Let f(x) be a differentiable function.∫ b

a

df

dx
dx = f(b)− f(a)
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This integration takes place on the interval [a, b] and is evaluated at the end points a and b. We can
think of the endpoints as the boundary of the interval. With this perspective, the left side is the integral
of some kind of derivative and the right side is the evaluation of the original function on a boundary.
If we let df be any kind of derivative, and

∫
∂S

be an integral which relates to the boundary of a set,
then when can write the archtypical form of this theorem.∫

S

df =

∫
∂S

f

For the fundamental theorem, the ‘integral’ on the right-hand side is just evaluation, since the boundary
is only the two points. Integration over a zero-dimensional regions, such as a set of points, is just
evaluation. Using this integration notation, the fundamental theorem is only the first of a whole family
of theorems of this type. They all relate a derivative operator on the left to a boundary operator on
the right.

3.5.2 The Fundamental Theorem of Line Integrals

The first of these new fundamental theorems comes from thinking about line integrals of paths through
conservative vector fields.

Theorem 3.5.4. Let F = ∇f be a conservative vector field with potential f and let γ(t) : [a, b]→ Rn
be a parametric curve. The fundamental theorem of line integrals shows we can solve this integral by
evaluation on the endpoints of the curve.∫

γ

F · ds = f(γ(b))− f(γ(a))

Proof. We calculate the integral in steps.∫
γ

F · ds =

∫
γ

∇f · Tds∫ b

a

∇f(γ(t)) · γ′(t)dt

=

∫ b

a

(
∂f

∂x
(γ(t)),

∂f

∂y
(γ(t)),

∂f

∂z
(γ(t))

)
· (γ′1(t), γ′2(t), γ′3(t)) dt

=

∫ b

a

∂f

∂x
(γ(t))γ′1(t) +

∂f

∂y
(γ(t))γ′2(t) +

∂f

∂z
(γ(t))γ′3(t)dx

=

∫ b

a

d

dt
(f(γ(t))) dt

= f(γ(b))− f(γ(a))

We used multi-variable chain rule in the fourth line of the calculation.
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Side by side, we can see the similarity of the theorem with the original fundamental theorem: derivatives
on one side and (evaluation on) boundaries on the other side.∫ b

a

df

dx
dx = f(b)− f(a)∫

γ

∇f · ds = f(γ(b))− f(γ(a))

3.5.3 Implications for Conservative Vector Fields

The fundamental theorem for line integral applies to conservative vector fields: it says that the integral
of a conservative vector field can be calculated simply by evaluation on the end points. That means all
the points on the path inbetween are irrelevant!

Proposition 3.5.5. Let F = ∇f be a conservative vector field. Then line integrals of F are path-
independent. Their value only depends on the endpoints.

No matter how strange the path is, no matter how many times it loops around and goes elsewhere,
only the endpoints matter. If f is potential energy, then f(γ(b))−f(γ(a)) is the potential energy at the
end less the potential energy at the start. This difference is the change in potential energy. The work
to move through the force field is equal to the change in potential energy. The work can be defined in
terms of kinetic energy lost or gained, so this says that the kinetic energy lost or gained is equal to the
change in potential energy. Therefore, energy is conserved! This explains the term ‘conservative vector
field’: these are vector fields where conservation of energy makes sense. (As before, there are sign issues
in the fiction of energy and work: we may need to take the negative of the usual or expected potential
energy to make conservation of energy make sense.)

We can calculate very explicitly in terms of the gain in kinetic energy as well. Let F = ∇f be a
conservative force. Then F = ma, where a is acceration. Also, if γ is a curve representing movement,
then γ′′ is the acceleration. Then we look carefully at the change in potential energy using our new
theorem.

−∆PE = f(γ(b))− f(γ(a))

=

∫
γ

F · Tds

=

∫ b

a

mγ′′(t) · γ′(t)dt

=
m

2

∫ b

a

d

dt
(γ′(t) · γ′(t))dt

=
m

2

∫ b

a

d

dt
|γ′(t)|2dt

=
m

2
|γ′(t)|2

∣∣∣∣b
a

=
mv2b

2
− mv2a

2
= ∆KE
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Previously, we saw that conservative vector fields we irrotational and, conversely, an irrotation field
defined on a simply connected set was guaranteed to be conservative. We now have a new character-
ization of conversative fields: their line integrals are path independent. We can similarly ask if the
converse holds and again, we find a topological condition. First, we start with a slightly more narrow
proposition.

Proposition 3.5.6. Let F be a vector field on U an open path-connected set in Rn. If
∫
γ
F = 0 for

all closed paths γ in U , then F is conservative.

A full characterization of conservative fields is given by this more-complete proposition.

Proposition 3.5.7. Let F be a vector field on U an open simply-connected set in Rn and let γ :
[a, b]→ U be a parametric curve. The following four conditions are equivalent.

(a) F is conservative on U . (By definition, this means F = ∇f for a scalar field f).

(b) The line integrals of F are path independent in U .

(c) The line integral of F is zero for any closed path in U .

(d) ∇× F = 0.

3.5.4 Examples of Conservative Vector Fields

Example 3.5.8. If F = (y cos(xy), x cos(xy), 2z) then F is defined on R3, which is simply connected.

∇× F =

(
∂

∂y
2z − ∂

∂z
x cos(xy),

∂

∂z
y cos(xy)− ∂

∂x
2z,

∂

∂x
x cos(xy)− ∂

∂y
y cos(xy)

)
= (0, 0, cosxy − xy sinxy − cosxy + xy sinxy) = (0, 0, 0)

Therefore, F is a conservative field. We can try to calculate its potential.

f =

∫
y cos(xy)dx+ g1(y, z) = sin(xy) + g1(x, y)

f =

∫
x cos(xy)dy + g2(x, z) = sin(xy) + g2(x, z)

f =

∫
2zdz + g3(x, y) = z2 + g3(x, y)

f = sinxy + z2 + c

We can check ∇f to see that we recover the original field F .

Example 3.5.9. If F = (3yz − 8xz2 + 3x2y, 6xyz + x3 + 2yz2, 3xy2 − 8x2z + 2y2z), then F is defined
on all R3.

∇× F = (6xy + 4yz − 6xy − 4yz, 3y2 − 16z − 3y2 + 16z, 6yz + 3x2 − 3yz − 3x2) = (0, 0, 0)
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Therefore, F is conservative. We can try to calculate its potential.

f =

∫
F1dx = 3xy2z − 4x2 + z2 + x3y + g1(y, z)

f =

∫
F2dx = 3xy2z + x3y + y2z2 + g2(x, z)

f =

∫
F3dx = 3xy2z − 4x2z2 + y2z2 + g3(x, y)

f = 3xy2z − 4x2z2 + x3y + y2z2 + c

3.6 Parametric Surfaces

We’ve defined integrals of vector fields along arametric curves. However, parametric curves are only
one dimensional objects. What does it mean to integrate a vector field over higher dimensional objects?

Vector fields are not like scalar fields, where we can just integrate over regions of R3. We take a hint
from line integrals using parametric curves: we need parametric objects. We can define parametric
objects in any dimension, though the theory gets more and more difficult with added dimensions. In
this section we define parametric surfaces, which are the 2-dimensional analogue to parametric curves.

If [a, b] is an interval on R, a curve was a function on that interval into a vector space.

γ : [a, b]→ R3

The curve is a continuous (usually differentiable) function on the interval. For surfaces, we need two
directions of freedom, so we start in R2 instead of R. We might start with intervals I in R2, but we
can be a bit more general.

Definition 3.6.1. Let D ⊂ R2 be a simply connected set. A parametric surfaces in R3 is a continuous
(usually differentiable) function on D into a vector space.

σ : D → R3

Like parametric curves, we visualize surfaces only by their outputs. The input set D isn’t visualized;
rather, it is thought of as the parameter space. The difference, compared to curves, is that we now have
a 2-dimensional parameter space. This allows two independent directions of movement on the surface.

We need to refine the previous definition a little bit: we want to avoid places where the surface has
strange behaviour by insisting that the surface is ‘smooth’. Differentiability is required here, but the
condition is actually a bit stronger. We need to think about tangents.

For a curve γ(t), the only derivative was the time derivative and γ′(t) was the tangent. For a surface,
let u and v be the coordinates in the region D. Then we have two partial derivatives: σu = ∂

∂uσ(u, v)

and σv = ∂
∂vσ(u, v). These are both tangents.
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Definition 3.6.2. A parametric surface is called smooth if it has two (linearly) independent tangent
directions at any point. Working in R3, we can calculate σu×σv. This is perpendicular to both tangents,
so this direction should be normal to the surface. We will use that name, and call σu × σv the normal
to a smooth parametric surface.

The smoothness condition can be rephrased: the normal must never be zero. We will be using the
normal extensively and zero normals will cause many problems. Therefore, from this point, we assume
all surfaces are piece-wise smooth, with non-zero normals. Piece-wise is enough, since the cross-over
sections will be lower-dimensions and thus can be ignored in integration. (For curves, we made implicit
use of a similar convention that the tangent should never be the zero vector, though we didn’t say so
at the time.) Since we are using the cross-product, this definition on applies to R3. For the rest of this
entire chapter, we will exclusive be working with parametric surfaces in R3.

Example 3.6.3. If f(x, y) is a 2-variable function on a simply-connected domain D, it’s graph is a
surface. We can use D as the domain and σ(u, v) = (u, v, f(u, v)) is the graph expressed as a parametric
surface.

Example 3.6.4. Consider a surface of rotation. If we rotate y = f(x) about the x axis for x ∈ [a, b],
then we can take θ to be other parameter and D = [a, b] × [0, 2π] to be the parameter domain. Then
σ(x, θ) = (x, f(x) cos θ, f(x) sin θ) is the surface of revolution.

Example 3.6.5. If (θ, φ) ∈ D = [0, 2π] × [0π] then σ(θ, φ) = (r sinφ cos θ, r sinφ sin θ, r cosφ) is a
parametric description of the sphere with radius r.

Example 3.6.6. If (θ, z) ∈ D = [0, 2π] × [0, h] then σ(θ, z) = (r cos θ, r sin θ, z) is a parametric
description of a cylinder with height h and radius r oriented along the z-axis.

Example 3.6.7. If (u, v) ∈ D = [0, h] × [0, 2π] then σ(u, v) = (u cos v, u sin v, u) is a parametric
description of a cone opening upwards in the z direction with height h and base radius h as well.

3.7 Surface Integrals

Recall the definition of the line integral.∫
γ

F · Tds =

∫ b

a

F (γ(t)) · γ′(t)dt

On the left, we started with intrinsic information, using the arclength parametrization and infinitesimal
ds to build a definition which didn’t depends on parametrization. Then we showed, using ds = |γ′(t)|dt
how to calculate the line integral for an arbitrary the description of length in terms of the parametriza-
tion. We have something similar for surfaces. Instead of length, we have an infinitesimal area dA which
is independent of the parametrization. If σ(u, v) is a function of the parameters u and v on a simply
connected domain D, through a change of variables, we can express the intrinsic dA in terms of the
specific parameters u and v. For curves, the mediating factor was the length of the tangent; for surfaces,
it is the length of the normal.

dA = |σu × σv|dudv

This gives us a local area differential for integration.
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Definition 3.7.1. Let σ(u, v) be a parametric surface defined on a simply connected open set D. Let
f be a scalar field defined in a neighbourhood of the surface σ. The integral of f over σ is defined as
follows.∫

σ

fdA =

∫
D

f(σ(u, v))|σu × σv|dudv

This definition lets us calculate surface area of parametric surfaces. To find area, we just integrate the
constant scalar field f = 1.

A =

∫
σ

1dA =

∫
D

|σu × σv|dudv

If we expand this out, we can get the full expression in all its complexity.

A =

∫
D

√(
∂σ2
∂u

∂σ3
∂v
− ∂σ2

∂v

∂σ3
∂u

)2

+

(
∂σ3
∂u

∂σ1
∂v
− ∂σ3

∂v

∂σ1
∂u

)2

+

(
∂σ1
∂u

∂σ2
∂v
− ∂σ1

∂v

∂σ2
∂u

)2

dudv

Example 3.7.2. Let σ be the graph of a function f : R2 → R as defined in Example 3.6.3. Then we
can use the area formula to write the general equation of the surface area of the graph of f over a
simply-connected region D in its domain.

A =

∫
D

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

+ 1dxdy

Example 3.7.3. Let f : [a, b] → R be a differentiable function and let σ is a surface of revolution as
defined in Example 3.6.4. Let D = [a, b] × [0, 2π]. Then we can define the surface of such a general
surface of revolution.

A =

∫
D

√
1−

(
∂f

∂x

)2

f(x)dx

Example 3.7.4. The parabaloid z = k(x2 + y2) can be described by σ(u, v) = (u, v, k(u2 + v2)) over
D a circle of radius r. We can calculate it surface area.

A =

∫
D

√
4k2u2 + 4k2vw + 1dudv

=

∫ 2π

0

∫ r

0

√
4k2r2 + 1rdrdθ

u = 4k2r1 + 1 =⇒ du = 8k2rdr

= 2π

∫ 4hk

1

√
u

1

8k2
du

=
π

4k2
2u

3
2

3

∣∣∣∣∣
4kh

1

=
π

6k2

(
(4kh)

3
2 − 1

)
=

2
√
h3k3 − 1

6k2
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Example 3.7.5. The surface of revolution under f(x) = 1
x for x ∈ [1,∞) is called the Horn of Gabriel.

It can be described parametrically for (x, θ) ∈ [1,∞)× [0, 2π] as the following surface.

σ(x, θ) =

(
x,

cos θ

x
,

sin θ

x

)
The surface area of the Horn of Gabriel is quite interesting. (The comparison results for single-variable
integrals are useful in this calculation.)

σx =

(
1,
− cos θ

x2
,
− sin θ

x2

)
σθ =

(
0,
− sin θ

x
,

cos θ

x

)
σx × σθ =

(
−1

x3
,

cos θ

x
,
− sin θ

x

)
|σx × σθ| =

√
1

x6
+

1

x2
=

1

x

√
1

x4
+ 1

A =

∫
σ

1 =

∫ ∞
1

∫ 2π

0

1

x

√
1

x4
+ 1dθdx

= 2π

∫ ∞
1

1

x

√
1

x4
+ 1dx ≥ 2π

∫ ∞
1

1

x
=∞

Compare this surface are with the volume of the Horn of Gabriel.

V =

∫ ∞
1

∫ 1
x

0

∫ 2π

0

rdθdrdx

= 2π

∫ ∞
1

r2

2

∣∣∣∣ 1x
0

= 2π

∫ ∞
1

1

2x2
dx

=
2π

2

−1

x

∣∣∣∣∞
1

= π

This is a very strange situation: an object with finite volume and infinite surface area.

3.8 Flux Integrals

In addition to integrating scalars along surfaces, we also want to integrate vector fields. For the defini-
tion, we again look at line integrals. We took a dot product with the tangent to the curve to measure
how much the field acts with or against the motion of the curve. For surfaces, we also take a dot
product, but now with the normal of the surface. By doing so, we are measuring how much the vector
field passes through the surface: if the dot product is large, the field direction is similar to the normal
and almost perpendicular to the surface. If the dot product is small, the field moves almost in parallel
with the surface, moving across it instead of through it.
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We used the dot product with the unit tangent to calculate a line integral.∫
γ

F · ds =

∫
γ

F · Tds =

∫ b

a

F (γ(t)) · γ′(t)dt

We need something similar to the unit tangent to calculate integrals of fields over surfaces.

Definition 3.8.1. Let σ(u, v) be a parametric surface in R3 defined over a simply-connected domain
D. The unit normal of the surface is the vector σu×σv

|σu×σv| . (Our convention that the normal is never zero

helps to avoid division by zero in this definition.)

Definition 3.8.2. Let σ(u, v) be a parametric surface in R3 defined over a simply-connected domain
D. Let F be a vector field defined on a neighbourhood of the surface. The flux integral is defined to
be the following integral.∫

σ

F ·NdA =

∫
σ

F · dA

The first notation is more complete, but the second notation is conventional.

As with curve, we don’t want to calculate with the intrinsic unit normal; we’d rather calculate with
a specific parametrization. In an arbitrary parametrization, da = |σu × σv|dudv. Then we perform a
change of variables on the integral in the definition.∫

σ

F ·NdA =

∫
D

F (σ(u, v)) · σu× σv
|σu × σv|

|σu × σv|dudv =

∫
D

F (σ(u, v)) · (σu × σv)dudv

Like the line integral, this is independent of the parametrization since it is equal (by change of variables)
to the intrinsic defintion.

Flux measures how much of the vector field passes through the surface. This is mostly easily seen for
fluids if we think of the surface as a net. In this case the flux is exactly the amount of fluid passing
through the net per unit time. For fields of force, the interpretation is slightly less obvious. However,
flux will still matter a great deal for calculations involving forces.

Example 3.8.3. F (x, y, z) = (0, 0, k) is a constant vertical flow with the same flow rate. We can think
of this flowing through a vertical pipe with radius a around the z axis by restricting the field to the
domain where x2 + y2 ≤ a. The surface is a cross-section of the pipe, which we can parametrize as
σ(r, θ) = (r cos θ, r sin θ) for (r, θ) ∈ [0, a]× [0, 2π].

σr = (cos θ, sin θ, 0)

σθ = (−r sin θ, r cos θ, 0)

σr × σθ = (0, 0, r)∫
σ

F · dA =

∫ a

0

∫ 2π

0

krdθdr

=
2πa2

2
= πa2k = (πa2)k

πa2 is the cross-sectional area and k is the rate of flow, so we have a uniform rate of volume of water
flowing through the pipe per unit time.
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Example 3.8.4. We could ask the same question with a different flow, one which is not uniform.
Consider somthing like this, still moving vertically, but with variable speed.

F (x, y, z) =

(
0, 0,

k(a2 − x2 − y2)

a2

)
∫
σ

F · dA =

∫ a

0

∫ 2π

0

k(a2 − r2)

a2
rdθdr

=
2πk

a2

∫ a

0

a2r − r3dr

=
2πk

a2

(
a2r2

2
− r2

4

)∣∣∣∣a
0

=
2πk

a2

(
a4

2
− a4

4

)
=
πka2

2

This is half the original flux. The lower rate of flow is justified since the fluid speed goes to zero near
the edge of the pipe.

Example 3.8.5. We can also consider a turbulent flow.

F (x, y, z) =

(
sin

((
a− r
a

)
π

)
, sin

((
a− r
a

)
π

)
, cos

((
a− r
a

)
π

))
F · σr × σz = k cos

((
a− r
a

)
π

)
r∫

σ

F · dA =

∫ a

0

∫ 2π

0

k cos

((
a− r
a

)
π

)
rdrdθ

= 2πk

∫ a

0

cos
(
π − πr

a

)
rdr

= 2πk

∫ a

0

−r cos
(πr
a

)
dr

= −2πk
a

π

∫ a

0

πr

a
cos
(πr
a

)
dr

u =
πr

a

= −2πk
a

π

∫ π

0

u cosu
adu

π

=
−2πa2

π
(cosu+ u sinu)

∣∣∣∣π
0

=
4ka2

π

Example 3.8.6. Consider a paddle with a roughly rectangular cross section 15cm wide and 30cm tall.
Say it moves through the water in the z direction with speed v. We can reinterpret the situation by
letting the water move with field F = (0, 0, v) in which the paddle is stationary. We can think of the
force the paddle causes in terms of the flux of this field through the paddle.

Now, we can perform a paddle stroke directly perpendicular to the direction of movement or at an
angle θ. Our question is: how does our forward force (hence flux) vary due to θ?
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If the paddle is angled at angle θ, then it is represented as a surface with normal (sin θ, 0, cos θ).
Therefore F ·N = v cos θ.∫

σ

F ·NdA =

∫
D

V cos θdA = v cos θ

∫
σ1dv = 450v cos θ

Compared to the perpendicular force or 450v, we just multiply by cos θ.

3.9 The Major Results

We we discussed the fundamental theorem of calculus earlier in these notes, we identified a particular
archetypical style.∫

∂D

f =

∫
D

df

Here, ∂ is a boundary operator for sets and df is some kind of derivative of f . There are several very
important theorems involving flux integrals which have this style. Before we state them, we have to
talk a little about boundaries of sets and orientation.

3.9.1 Boundaries and Orientation

Topologically, we have already defined the boundary of a set. The boundaries we want to use are slightly
different from the topological definition. Our sets here are parametric objects, so the boundaries are
the edges in terms of the parameter. For curves, these were the endpoints, and the boundary integral
was evaluation on the endpoints. However, evaluation on one endpoint was positive and the other
was negative. These boundaries have orientation, which affects the integrals. For curves, orientation
is direction and curves move from negative to positive. This gives the positive or negative signs for
evaluation on the endpoints.

For surfaces, orientation is a choice of an outward or inward direction. It is indicated by the direction
of the (outward facing) normal vector. If the surface has an edge, then we can think of the edge as
a closed parametric curve; the curve traces the path around the edge. We need the direction of the
curve and the orientation of the surface to compatible. This is accomplished by a right-hand-rule. If
we trace the path around the surface, then the outward pointing normal of the surface must satisfy a
right-hand-rule for this rotation.

Lastly, we have solid regions in R3. By themselves, solid regions have no orentiation. However, solid
regions have boundaries which are closed surfaces (surfaces without edges). By convention, we insist
that the surface which bounds a solid region has an outward pointing normal: the normal points away
from the region, not into it.

Note that on the objects discussed in this section, the boundary operator ∂ satisfies ∂2 = 0. If we have
a solid region, its boundary is a closed surface, i.e., a surface with no boundary. If we have a surface,
its boundary is a closed curved, i.e., a curve with no boundary. And the boundary of a curve is two
points, which don’t have boundaries for dimension reasons.

69



3.9.2 Gauss-Green-Stokes

Now we can state the two main theorems for vector calculus. The theorems are stated for piece-wise
smooth objects, which means we allow for some number of sharp corners. The first is called Stokes’
Theorem.

Theorem 3.9.1. Let σ be a piecewise-smooth oriented parametric surface in R3, with boundary ∂σ = γ
a piecewise smooth oriented closed curve. Let F be a C1 vector field defined on a neighbourhood of σ.∫

∂σ

F · ds =

∫
σ

(∇× F ) · dA

This theorem has the desired form. We have a boundary on the left, and a differential operator (curl,
in this case) on the right. The second result is called Gauss’ Theorem.

Theorem 3.9.2. Let D be a simply-connected region in R3 whose boundary ∂D = σ is a piecewise
smooth oriented closed parametric surface. Let F be a C1 vector field defined on a neighbourhood of D.∫

∂D

F · dA =

∫
D

(∇ · F )dV

This theorem also has the desired form. We have a boundary on the left and a differential operator
(divergence, in thic case) on the right.

Lastly, there is a specialization of Stokes’ thoerem for R2, called Green’s theorem.

Theorem 3.9.3. Let D be a simply-connected region in R2 and let F = (F1, F2) be a C1 vector
field defined on a neightbourhood of D. We can interpret R2 as the xy plane in R3 and extend F as
F = (F1, F2, 0) as a vector field in R3. We can interpret D as a parametric surface in R3 which is
restricted to the xy plane, using x and y as parameters and the identity function D → D as σ. In this
setting, we can apply Stokes’ to get Green’s theorem.∫

∂D

F · ds =

∫
D

(∇× F ) · dA =

∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dxdy

Since these three named theorems are of similar form, they are often referred to as Gauss-Green-Stokes.

3.9.3 Examples of Gauss-Green-Stokes

Example 3.9.4. Let’s start in R2 with Green’s theorem. Let F (x, y) = (sinx, x2y3) and let σ be the
triangle with vertices (0, 0), (2, 0) and (2, 2). Then γ is the path in three straight lines from (0, 0) to
(2, 0) to (2, 2) and back to (0, 0). (Now we see why we need piece-wise smooth conditions: allowing
these sharp corners on the boundary path is very reasonable.) The line integral of F over γ could
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be calculated in three steps, by parametrizing each line segments and calculating those line integrals.
Green’s theorem gives us an alternate way to calcaulate the line integral.∫

γ

F · ds =

∫
σ

(∇× F ) · dA =

∫
σ

(2xy3 −−0)dxdy

=

∫ 2

0

∫ x

0

2xy3dydx

= 2

∫ 2

0

xy4

4

∣∣∣∣x
0

dx

= 2

∫ 2

0

x5

4
dx =

x6

12

∣∣∣∣2
0

=
26

12
=

16

3

Example 3.9.5. Let F = (sinx2, ey
2

+ x2, z2 + 2x2) and let γ be the counterclockwise path around
the triangle in R3 with vertices (3, 0, 0), (0, 2, 0) and (0, 0, 1). We could parametrize the three pieces
of the triangle, but lets use Stokes’ theorem with the triangle as the surface. The triangle is flat, so
it may be parametrized with a constant normal. The equation of the plane containing the triangle is
x
3 + y

2 + z = 1, with normal
(
1
3 ,

1
2 , 1
)
. The curl of F , after some algebra is (0,−4x, 2x). (Here the curl

is much easier to work with than the origianl F !) Then ∇× F ·N = (0,−4x, 2x) ·
(
1
3 ,

1
2 , 1
)

= 0. This
lets us treat the original (very complicated) line integral as a very straightforward surface integral.∫

γ

F · ds =

∫
σ

F · dA =

∫
σ

F ·NdA =

∫
σ

0dA = 0

Example 3.9.6. Let F be any C1 vector field and let σ = S2, the unit sphere in R3.∫
σ

∇× F =

∫
∂σ

F · ds = 0

The last integral is zero because the sphere doesn’t have any boundary. This is true for any closed
surface: Stokes’ theorem tells us that the integral of a curl over any closed surface must be zero.

We can ask: what does it mean to consider the flux of curl? If there is a positive flux of ∇×F through
a surface, this indicates the (local) tendnecy of the flow to move in a counterclockwise rotation across
the surface.

Example 3.9.7. Let σ(u, v) = (u, v, 4 − u2 − v2) for (u, v) in the disc about the origin of radius
2, (u2 + v2 ≤ 4). This σ is a parabaloid above the xy plane . Its bounding curve is the circle of
radius 2 about the origin in the xy plane, going counterclockwise (to fit the upward normal of the
surface with a right-hand-rule). The boundary curve is parametrized as γ(t) = (2 cos t, 2 sin t, 0). Let
F (x, y, z) = (z2, x2, y2). Then we can calculate the line integral of F over the boundary curve.∫

γ

F · ds =

∫ 2π

0

F (γ(t)) · γ′(t)dt

=

∫ 2π

0

(0, 4 cos2 t, 4 sin2 t) · (−2 sin t, 2 cos t, 0)dt

=

∫ 2π

0

8 cos3 tdt =
8

3
(2 + cos2 2t) sin t

∣∣∣∣2π
0

= 0
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This implies, by Stokes’ theorem, a zero result about the surface integral of ∇×F over the parabaloid.∫
σ

(∇× F ) · dA =

∫
σ

(2y, 2z, 2x) · dA = 0

It we calculated the flux directly, it would be as follows.

σu = (1, 0,−2u)

σv = (0, 1,−2v)

σu × σv = (2u, 2v, 1)

∇× F = (8v, 8− 2u2 − 2v2, 2u)∫
σ

∇× F · dA =

∫
D

(4uv − 16v − 4vu2 − 4v3 + 2u)dudv

Now we already know this is zero, without doing the long polar coordinate integration. Curiously, this
would be zero for any surface with this bounding curve γ. A cylinder closed at the top, a cone, a very
complicated ballon; it doesn’t matter. Only the boundary matters.

Example 3.9.8. Similarly, lets say that we want to integrate F = (z2, y, xz) over a closed curve
γ. Stokes’ theorem says we can calculate the integral of ∇ × F over any surface with boundary γ.

∇× F = (0, z, 0). But ∇× ( z
2

2 , 0, 0) is also (0, z, 0). Look at Stokes’ theorem for this case.∫
γ

F · ds =

∫
σ

∇× F · dA =

∫
γ

(
z2

2
, 0, 0) · dA

We can replace F with a much less complicated field and get the same line integral. This is true because
F and this new field both give the same curl. We have some terminology to generalize this strange
situation.

Definition 3.9.9. Let G and F be C1 vectors fields with G = ∇×F . We call F a vector potential for
G. If we need to differentiate between the two notion of potential, we will refer to the previous use of
potential as scalar potential.

The above argument shows that if G1 and G2 are vector potentials for the same F , then they have
equivalent line integrals over any closed curve.

How do we know if a field has a vector potential? For scalar potentials (on a simply connected set),
we checked ∇× F = 0. If F = ∇×G then ∇ · F = ∇ · (∇)×G = 0. As with scalar potentials, under
reasonable conditions, the inverse is true as well. A field has a vector potential (on a simply connected
set) if it have zero divergence.

How do we find a vector potential? If we know G and we assume ∇ × F = G, then we have to solve
this system of three differential equations:

∂F3

∂y
− ∂F 2

∂z
= G1

∂F1

∂z
− ∂F 3

∂x
= G2

∂F2

∂x
− ∂F 1

∂y
= G3
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This is usually prohibitively difficult. Moreover, this is a very underdetermined system. If F is a vector
potential, then for any scalar field f , F +∇f is also a vector potential, because

∇× (F +∇f) = ∇× F +∇×∇f = ∇× F + (0, 0, 0) = ∇× F = G

The inverse is true as well: if two have two vector potentials, they must differ by some ∇f .

Example 3.9.10. To do a tractable example, let’s return to the previous field. Let G = (0, z, 0).

Fa = (z2, y, xz), Fb =
(
z2

2 , 0, 0
)

are both vector potentials forG. Their difference must be a conservative

field.

Fa − Fb =

(
z2

x
, y, xz

)
= ∇

(
xz2

2
+
y2

2

)
If γ is any closed curve entirely in the xy plane, then since Fb = 0 on the xy plane, we have a general
vanish result about line integrals along γ.∫

γ

Fa · ds =

∫
γ

Fb · ds =

∫
γ

0 · ds = 0

Example 3.9.11. If σ is the sphere of radius 4 in R3 and F = (2x3, 2y3, 2z3), then let D be the solid
ball of radius 4. We start with a flux integral and use Gauss’ theorem to solve it.∫

σ

F · dA =

∫
D

∇ · FdV =

∫
D

6(x2 + y2 + z2)dV

=

∫ 4

0

∫ π

0

∫ 2π

0

6r2r2 sinφdθdφdr

= 12π (− cosφ)|π0
r5

2

∣∣∣∣4
0

=
12288π

5

Example 3.9.12. Let D is the region inside the cyliner x2 + y2 = 4 bounded below by the xy plane
and above by the plane x + z = 6. Let F = (x2 + sin z, xy + cos z, ey). Again, we start with a flux
integral and use Gauss’ theorem to solve it.∫

σ

F · dA =

∫
D

∇ · FdA =

∫
D

3xdV

=

∫ 2π

0

∫ 2

0

∫ 6−r cos θ

0

3r cos θrdzdrdθ

=

∫ 2π

0

∫ 2

0

3 cos θr2(6− r cos θ)drdθ

=

∫ 2π

0

(
16
r3

3
cos θ − 3r4

4
cos2 θ

)∣∣∣∣2
0

dθ

=
128

3
(− sin θ)|2π0 − 12

(
θ

2
+

sin 2θ

4

)∣∣∣∣2π
0

= −12π
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Example 3.9.13. If F = (z2 + xy2, cos(x + z), e−y + zy2), then ∇ · F = 0, so F is incompressible.
Then, if D is any solid region in R3 with boundary σ, Gauss’ theorem gives us a vanishing result.∫

σ

F · dA =

∫
D

∇ · FdV = 0

That calculation means that the flux of an incompressible field over any closed surface is zero. The
property of being incompressible means that equal amonts of the field flow in and flow out of any closed
surface, no matter how complicated the geometry.

Working with Stokes’ theorem previously, we realized we could change line integrals over a closed curve
by a conservative field and not alter the line integral. We can do the same over closed surfaces. Let σ
be a closed surface and F any field. Recall that ∇ · (∇×G) = 0. The following calculation shows how
we can alter the field F without changing the value of the flux integral.∫

σ

F · dA =

∫
D

∇ · Fdv =

∫
D

∇ · (F +∇×G)dV =

∫
σ

(F +∇×G) · dA

Example 3.9.14. Consider a windsock which is the surface of revolution of the function y =
√

1− x
3

for x ∈ [0, 3], with outward oriented normal. Let F = (7,−z, y) be a field describing the wind near the
windsock. What is the flux through the windsock?

First, we can check ∇ · F = 0, so F is incompressible and has a vector potential. Assume F = ∇×G
for some vector potential G. If we call D the solid interior of the windsock, then the boundary of D
is the windsock and the circle at its mouth. We label the circle µ and consider it a parametric surface
with normal in the negative x direction. Then we apply Gauss twice, once in each direction.∫

σ

F · dA =

∫
D

∇ · FdV −
∫
µ

F · dA = −
∫
µ

F · dA

Alternatively, if γ is the boundary of the circle, we have the following calculation using Stokes’ theorem
(with the negative sign accounting for the change in direction of the normal).∫

σ

F · dA =

∫
γ

G · ds = −
∫
µ

F · dA

Very curiuosly, both Stokes’ and Gauss’ give the same assistance here. In any case, we can replace
our surface with a much easier surface: a disc of radius 1 in the yz plane, parametrized as µ(r, θ) =
(0, r cos θ, r sin θ) for r ∈ [0, 1] and θ ∈ [0, 2π]. We calculate the flux, reversing the conventional order
of the cross product to account for the normal in the negative x direction.

σr = (0, cos θ, sin θ)

σθ = (0,−r sin θ, r cos θ)

σθ × σl = (−r sin2 θ − r cos2 θ, 0, 0) = (−r, 0, 0)∫
µ

F · dA = −
∫ 2π

0

∫ 1

0

(7,−r sin θ, r cos θ) · (−r, 0, 0)drdθ

= −
∫ 2π

0

∫ 1

0

−7rdrdθ = 2π7
r2

2

∣∣∣∣1
0

= 7π

This is substantially easier than working with the windsock directly.
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Example 3.9.15. Let’s calculate the flux of F = 1√
(x2+y2+z2)3

(x, y, z) through the ellipsoid 4x2 +

9y2 + 6z2 = 36.

∂

∂x
F1 =

∂

∂x

x√
(x2 + y2 + z2)3

=
(x2 + y2 + z2)

3
2 0x 3

x (x2 + y2 + z2)
1
2 2x

(x2 + y2 + z2)3

=
(x2 + y2 + z2)

1
2

(x2 + y2 + z2)3
(x2 + y2 + z2 − 3x2)

=
−2x2 + y2 + z2

(x2 + y2 + z2)
3
2

∇ · F =
1

(x2 + y2 + z2)
3
2

(−2x2 + y2 + z2 − 2y2 + x2 + z2 − 2z2 + x2 + y2) =∫
σ

F · dA =

∫
D

∇ · FdV = 0

This is an incompressible field over a closed surface, so it has zero flux.

Example 3.9.16. Let F = (y, zey
2

, x + z2ez
2

) and let γ be the semicirlce from (−3, 0, 0) to (3, 0, 0)
which lies in the positive y part of the xyplane. What is the line integral?

First, we can check that ∇×F = (−1, 1, 0), so the field is not conservative. However, let’s also consider
the path δ from (3, 0, 0) to (−3, 0, 0) along the x axis. Then γ followed by δ is a closed path which
is the boundary of the half-circle of radius 3 in the xy plane. Call the half circle σ. We apply Stokes’
theorem.∫

γ+δ

F · ds =

∫
σ

(∇× F ) · dA

We can solve for the original line integral.∫
γ

F · ds =

∫
σ

(∇× F ) · dA−
∫
δ

F · ds

These two integrals on the right are notably easier than the first integral. δ is entirely on the x axis,
so F = (0, 0, x) when y = z = 0. The tangent to δ is (1, 0, 0) so F · N = 0, which means the second
integral vanishes.

The normal to σ is (0, 0,−1), pointing in the negative z direction to match orientation. (∇×F ) ·N =
(−1, 1, 0) ·(0, 0,−1) = 0, so the first integral vanishes. Therefore, our original line integral also vanishes.

Note that the field is not conservative, so a different path from (−3, 0, 0) to (3, 0, 0) might have a
different value. If we worked in the xz plane instead of the xy plane with the same setup, the second
integral would still vanish but the normal to σ would be (0,−1, 0), so (∇ × F ) · N = (−1) and the
value of the first integral would be non-zero.∫

σ

−1dA = −9π

2
=⇒

∫
γ

F · ds =
−9π

2
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3.10 Vector Calculus and Maxwell’s Equations

3.10.1 19th Century Electromagnetic Observations

A very general setup in physics is to observe the interactions of a system, write down a differential
equation which describes those interactions, and try to solve the DE to find a function which will
predict future action. In vector calculus, those differential equations are almost always stated interms
of the ∇ operator. The origin of ∇ and the vector caculus was the attempt to understand electricity
and magnetism in the later part of the 19th century. In the investigation of electricity and magentism
in the 19th century, several important experimental observations were made by a number of different
scientists and engineers.

• Electric charge exists and creates an electric field.

• Flow of electric charge is possible (current).

• Magnetic charge only comes in dipoles – isolated magnetic charge is impossible. Magnetic dipoles
create magnetic fields.

• Magnetic and electric fields interact.

• A current (moving electric charge) through a wire creates a magnetic field.

• If the wire is wrapped into a solenoid, it creates a field inside the coil which obeys a RHR.

• A changing magnetic field induces an electromotive force.

• Transformers can be built out of two solenoids: the first generates a magnetic field, which induces
electric flow in the second.

• Electric fields act on any charged particles by attracting or repelling them.

• Magnetic fields act only on moving charged particles and induce torque to change the direction
of movement.

3.10.2 Mathematics Formalism for Electromagnetism

We label the electric field E and the magnetic field B. In terms of the fields, we can restate the
observations. The first set of observations involve statics.

• Isolated electric charges q exist.

• Isolated electric charge creates a field E of force per unit charge.

• Charge can be a point charge or a charge density ρ over a region. Charge density has units of
C/m3 or A · s/m3.

• The field E has unit of volts per meter, which in SI units is kg ·m/s3 ·A.

• There is a constant permittivity of the vacuum, which is ε0 = 8.85×10−12 with units s4·A2/m3·kg.

• If a charge density ρ is creating the electric field E, we can observe that ∇ · E = ρ
ε0

.

• Isoated magnetic charge does not exists.
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• A magnetic dipole creates a forceB (per charge-velocity) which acts on a moving charged particple
by rotation it away from its direction of movement.

• The units of B are telsas, which are kg/A · s2.

• There is a constant permeability of the vacuum, which is µ0 = 4π×10−7 with units m ·kg/s2 ·A2.

• Since there are no monopoles, all charged is balanced and ∇×B = 0 in any magnetic situation.

Both static situations (electric and magnetic) produce fields and forces on charged particle. The action
on charged particle by both E and B is summarized in the Lorentz force law. If q is a charged particle
travelling with velocity v, then the force satisfies this law.

F = Eq + q(v ×B)

The second set of observations involve dynamics. What happens when E and B are changing?

• A changing E fields induces a B field and vice-versa.

• In addition, a current induces a B field.

• Magnetic current is impossible, so it cannot induce a E field.

• We can observe that the induced E field due to B satisfies a differential equation.

∇× E =
−∂B
∂t

• We can observe that the induced B field due to an electric field E and a current (where J is
current density) also satisfies a differential equation.

∇×B = µ0J + µ0ε0
∂E

∂t

These observations give us the first presentation of Maxwell’s equations: the presentation via differential
operators. There are four equations: two for statics, which calculate divergence of the fields, and two
for dynmanics, which calculate curl of the fields.

∇ ·B = 0

∇ · E =
ρ

ε0

∇×B = µ0J + µ0ε0
∂E

∂t

∇× E =
−∂B
∂t
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3.10.3 Gauss-Green-Stokes and Maxwell’s Equations

We can apply Gauss’ and Stokes’ theorem to Maxwell’s equation to get a second presentation. Let D
be a solid region of space and σ a parametric surface (not necessarily the boundary of D). We define
four new symbols.

• QD is the total charge in the solid region D.

• Iσ is the total current flowing through a surface.

• ΦE,σ is the flux of E through σ.

• ΦB,σ is the flux of B through σ.

If σ is the bounding surface for the region D, then we can apply Gauss’ theorem to the field E.

ΦE,σ =

∫
σ

E · dA =

∫
D

∇ · EdV =

∫
D

ρ

ε0
dV =

QD
ε0

We can do the same for B, remembering that ∇ ·B = 0.

ΦB,σ =

∫
σ

B · dA =

∫
D

∇ ·BdV =

∫
D

0dV = 0

Now let σ be any surface (not the boundary of D) and let γ be its boundary. We can think of γ as a
loop of wire, and σ the surface inside the loop. The line integral of E along the wire is the work done
on by the field moving electrons along the wire. We can use Stokes’ to calculate the line integral.∫

γ

E · ds =

∫
σ

(∇× E) · dA = −
∫
σ

∂B

∂t
= − ∂

∂t
ΦB,σ

Thinking the other way around, this tells us the flux through the wire of the magnetic field induced
by the current. If the loop is now a series of loops in a solenoid, the flux adds up, so more loops gives
move surface area, hence more flux, hence a greater induced magnetic field. In an electric transformer
we adjust the ingoing and outgoing current by having different numbers of coils on each solenoid.

For magnetic field, we have also have a Stokes’ theorem calculation.∫
γ

B · ds =

∫
σ

(∇×B) · dA =

∫
σ

µ0J · dA+

∫
σ

µ0ε0
∂E

∂t
= µ0Iσ + µ0ε0

∂

∂t
ΦE,σ

We can put these all together into the second form of Maxwell’s equations. In the first part, σ is the
closed boundary of D, in the second part, σ is an open surface with boundary γ.∫

σ

E · dA =
QD
ε0∫

σ

B · dA = 0∫
γ

E · ds =
−∂
∂t

ΦB,σ∫
γ

B · ds = µ0Iσ + µ0ε0
∂

∂t
ΦE,σ
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3.10.4 Maxwell’s equations in a Vacuum

A strange question: what happens we we consider Maxwell’s equation in a vacuum with no external
influence? Without charge or current, the differential form of the equations is as follows.

∇ ·B = 0

∇ · E = 0

∇×B = µ0ε0
∂E

∂t

∇× E =
−∂B
∂t

This is a difficult system of differential equations, but it does have a solution. Therefore, at least
mathematically, we can have electic and magnetic field existing in a vacuum, even without any charge,
current, or magnetic dipoles. We’re going to do some work to try to solve this system of DEs. In what
looks like random calculations, let’s dive in.

∇× (∇× E) = ∇×−∂B
∂t

=
−∂
∂t

(∇×B)

= − ∂

∂t
µ0ε0

∂E

∂t

= −µ0ε0
∂2E

∂t2

We have the identity ∇× (∇×E) = ∇(∇·E)−∇2E, where the Laplacian here means the Laplacian of
each of the three components of E. The first term is 0, since ∇·E = 0, so we get ∇×(∇×E) = −∇2E.
Let’s put this new piece together with the previous calculation.

∇2E = µ0ε0
∂2E

∂t2

A similar calculation exists for B.

∇2B = µ0ε0
∂2B

∂t2

These are wave equations, so we expect that we will have wave solutions for E and B. The full solutions
are very general, so lets make some assumptions which are justified by observation. First, we assume
E ⊥ B. Second, let z be the direction of propogation of the waves, so the waves themselves are only in
the xy plane. By readjusting coordinates, we can assume E = (E1, 0, 0) and B = (0, B2, 0). Then we
have two differential equations in the scalar fields E1 and B2.

∂

∂z2
E1 = µ0ε0

∂2E1

∂t2

∂

∂z2
B2 = µ0ε0

∂2B2

∂t2
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We’ll note solve these DEs, but they have the following reasonable solutions.

E1 = a1 cos

(
z +

1
√
µ0ε0

t

)
+ b1 sin

(
z +

1
√
µ0ε0

t

)
B2 = a2 cos

(
z +

1
√
µ0ε0

t

)
+ b2 sin

(
z +

1
√
µ0ε0

t

)
These are waves propogating in the z direction. The coefficient of t is the wave speed. What is this
coefficient?

1
√
ε0µ0

1

8.86× 10−12 · 4π × 10−9
= 2.997× 108m/s

The units also work out to recover a velocity.

1√
m·kg
s2A2

s4A2

m3kg

=
1√
s2

m2

=
m

s

This is a familiar number: c, the speed of light. And light is exactly what this wave is: propogation
of electromagnetic fields through a vacuum is light. At the time of Maxwell, light was not understood
as electromagnetic radiation. Maxwell argued that his system predicted the electromagnetic nature of
light, which was eventually proved correct. The relationship in the basic constants (the permittivity,
premeability and the speed of light) is an important fact about the universe.
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Chapter 4

Differential Forms and Differential
Geometry

4.1 Manifolds and Coordinate Functions

The last section of these notes is a brief introduction to differential geometry. The main purpose of
this introduction is to explain the connection between the major theorems of the previous chapter.
By defining objects called differential forms, we can reduce all the fundamental theorems and Gauss-
Green-Stokes to one very simply statement.

First, however, we need to a new geometric object: manifolds. Differential geometry is essentially
calculus on manifolds. So far, we’ve worked with parametric curves and surfaces (we could imagine
parametric objects in higher dimensions as well). Manifolds are a generalization of parametric objects.
The major novelty of manifolds is that we allow different parts of the manifolds to have different
parametrizations, as long the parametrizations cooperate where they overlap.

Consider the sphere, which we parametrized as σ(θ, φ) = (r sinφ cos θ, r sinφ sin θ, r cosφ). This was
a good parametrization, but it had problems at the poles, where θ was no longer defined. The poles
present a problem for doing calculus on the sphere. We might try to rework the parametrization, but
we would find that any parametrization of the sphere will have at least one point with this polar
problem. To fully perform calculus on the sphere, we have to allong different regions to have different
parametrization. The sphere is one of the first and most important manifolds in differential geometry.

We can understand the problems of parametrization in terms of coordinate lines. At most points on
the sphere, the coordinate lines (looking very locally) resemble the coordinates lines of R2: a grid.
However, at the poles, the coordinate lines look like rays and concentric circles. For manifolds, we can
parametrizations where the coordinate lines always locally look like a grid.
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Definition 4.1.1. Let U ⊂ Rn be any set and let D be a simply connected oben subset of Rk. A
coordinate function on U is an injective C1 function φ : D → U . Let M ⊂ Rn. M is called a manifold
if it can be covered by open sets U which have coordinate functions. The number of variables k in the
dimension of the manifold.

The complete definition of a manifold also includes information about how the coordinate functions
cooperate where they overlaps. Though overlaps and compatibility are important and central parts of
the definition, we are going to ignore these issues for the purposes of these notes. We will work only in
the local situation, considering one open set U and its coordinate function φ.

φ is called a coordinate function because it allows us to use the variables ui ∈ D(0, r) as coordinates
on the manifold. Much like parametrized object, the input coordinates to the coordinate function tell
us how to identify points on the manifold. Everything on a manifold is determined by how it works in
local coordinates, accessed by use of a coordinate function.

Example 4.1.2. Any open set U in Rn, is itself a manifold with φ = Id. If k = 1, then φ defines a curve
where the local coordinate is the parameter t. If k = 2, then φ defines a surface and the parameters u
and v are the local coordinates.

Example 4.1.3. Any parametric curve γ : [a, b] → Rn is also a manifold. The function γ is the
coordinate function.

Example 4.1.4. If D is a simply connected open set in R2, then any parametric surface σ : D → Rn
is also a manifold. The function σ is the coordinate function.

For parametric curves, γ, we calculated γ′, which was the tangent vector. All multiples of γ′ gave a
tangent line to the curve. For parametric surfaces, σ, we calculated σu and σv. All linear combinations
of σu and σv give a plane which is tangent to the surface.

Definition 4.1.5. Let M be a manifold of dimension k. Let D be a simply connected open set in Rk
with φ : D → U a coordinate function on M . Let ui be the variables of Rk on the set D. For each
such ui, the partial derivative ∂φ

∂ui
is a tangent vector to the manifold. The tangent space Tp at a point

p ∈ U is the span all of the tangent vectors ∂φ
∂ui

where i = 1, . . . , k.

There is some strange but conventional notation for tangent vectors to manifolds. Using the conditions
of the previous definition, instead of ∂φ

∂ui
, we often simply write ∂i for the tangent vector. If we want

to specify the point p on the manifold, we write ∂i(p). Notice, in this definition, that the subscript i
refers to the coordinates defined by the coordinate function φ: the coordinate function is implicit in
every manifold definition. We access all the information about a manifold via its coordinate functions.

For parametric curves, we used the condition γ′(t) 6= 0 as an important condition in line integral.
Similarly, for parametric surfaces, we insisted on non-zero normals. We called such curves and surfaces
smooth. For manifolds, the situaiton is similar.

Definition 4.1.6. A manifold M of dimension k is called smooth if all of its tangent spaces Tp are
vector spaces of dimension k (i.e., copies of Rk).

Many definition of manifolds assume the smoothness condition. We will do the same: for the remainder
of these notes, all manifolds are assumed to be smooth.
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4.2 Functions on Manifolds

Definition 4.2.1. Let M be a k-dimensional manifold in Rn. A scalar field on M is a function
f : M → R.

A scalar field is simply defined: it assign a scalar to each point on the manifold. We might think that
vector fields on the manifold we similarly easy, but we are going to take a very different approach.

Definition 4.2.2. A vector-valued function or vector field on a manifold is defined to be a function

F : M → ∪p∈MTp

such that f(p) ∈ Tp for all p ∈M .

What does this strange notation mean? Previously, our vector fields had outputs in Rn for some n.
This definition is different in two ways. First, the output dimension can only be k, the dimension of
the manifold. Second, instead of assigning vectors in Rk to each point, we assign vectors in the tangent
space to each point. Each Tp is a copy of Rk (since we assumed all manifolds are smooth!), so a vector
field is assigning vectors in Rk. Though it seems strange, there are excellent reasons for restricting
outputs to tangent spaces.

Any vector field F can be decomposed into components F = (f1, f2, . . . , fk) in terms of the coordinates
of each of the Tp. Since the ∂i are a basis for each Tp, we can write vector fields as:

F =

k∑
i=1

fi∂i = (f1, f2, . . . , fk) · (∂1, . . . , ∂k)

Each fi is a scalar function. Vector fields are combinations of the ∂i where the coefficient are scalar
functions.

Example 4.2.3. Let’s make this a little bit more explicit. If u, v are the local coordinates on a
2-dimensional manifold, then the following are all vectors fields on the manifold.

• (u2 + v2)∂u + 3∂v
• sin(v)∂u + cos(u)∂v

• (4u− 3v)∂u + (2u− 9v)∂v

4.3 Differential Forms

Now we can start to define the main object of this chapter: the differential form. The definition is very
odd; be warned. We start with a little bit of linear algebra.
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Definition 4.3.1. Let L be a linear space over R. The dual space of L is the space of all linear function
f : L→ R. It is a linear space of the same dimension as L and is written L∨. If {v1, . . . , vk} is a basis
for L, then the dual basis for L∨ is the set of function fi such that fi(vj) = δij .

Differential forms are classified by their degree, which is a non-negative integer. Instead of attempting
a full definition, we will start with the lowest degree forms and work our way up.

Definition 4.3.2. A degree 0 differential form (0-form) on a manifold M is just a scalar function on
M .

Definition 4.3.3. Let M be a manifold of dimension k and φ : D → U a coordinate functionon M .
A degree 1 differential form (1-form) on a manifold M is a function ω defined on U as follows.

ω : U → ∪p∈UT∨p

This is very strange: T∨p is the set of linear functions on each tangent space Tp. Therefore, a 1-form is
a function that, at each point of the manifold, outputs a new linear function on its own tangent space
Tp. Functions that output other functions – it’s a valid definition, but difficult to parse.

Since the ∂i are a basis for each Tp and differential forms create linear function on the Tp, it is sufficent
to know their effect on the ∂i. We can make use of the dual basis defined above.

Definition 4.3.4. Let dui to be a differential form that acts on each ∂i by

dui(∂i) = δij =

{
1 i = j
0 i 6= j

The dui for the dual basis to ∂i. A general 1-form ω can always be written in terms of this basis. If
the fi are scalar functions, then all 1-forms are written as a linear combination of the dui.

ω =

k∑
i=1

fidui

This defines 1-forms. Since they output linear function on the tangent space Tp, we think of them
acting on tangent vectors. Informally, higher degree forms are defined similarly; the only difference is
that they act on m-tuples of vectors. A 1-form acts on one vector, but an m-forms acts on a m-tuples
of vectors. Instead of giving a precise definition for this action, we’ll define higher order forms out of
1-form by the operations in the next section.

4.3.1 Products and Derivatives

There are four important operations that we can perform on differential forms. First, differential forms
are linear, so we can add, subtract and multiply by constants.

Second, there is a product of forms which is called the exterior product. We’ll define it on 1-forms,
but it can be extended to any degree.In general, the exterior product acts the degrees of the forms; in
particular, the product of two 1-forms will be a 2-form.
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Definition 4.3.5. Let ω and η be 1-forms. They each act on vectors in tangent spaces. Their exterior
product is a 2-form, so it acts on two vectors from each tangent space. It is defined by the following
formula.

ω ∧ η(v1, v2) = ω(v1)η(v2)− ω(v2)η(v1)

Proposition 4.3.6. The exterior product is associative. if ω, η and σ are all forms, then

ω ∧ η ∧ σ = ω ∧ (η ∧ σ) = (ω ∧ η) ∧ σ

Proposition 4.3.7. The exterior product is not commutative. Instead, it is anti-communtative.

ω ∧ η = −η ∧ ω

The anti-commutativity is easy to see from the definition. It implies a strange but very important
property of the exterior product.

ω ∧ ω = 0

With the basis dui, we had a description of any 1-form as a linear combination of the dui (where the
scalars were scalar functions). The exterior product gives a basis for higher degree forms. However,
anti-commutativity implies that dui ∧ dui = 0, so the basis for the 2-forms are all dui ∧ duj such
that i 6= j. Likewise, the 3-forms has a basis dui ∧ duj ∧ duk where all three indiced are distinct. In
general, l-forms are spanned by wedges of dui of length l where no index is repeated. When any index
is repeated, the form becomes 0. After we have these basis, any form is a linear combination of the
basis elements, where the coefficients are scalar functions.

In addition to a product, there is a derivative for differential forms.

Definition 4.3.8. Let ω bs a 1-form, which we write with the basis dui.

ω =

k∑
i=1

fidui

The the exterior derivative of ω is written dω and is expressed as follows.

dw =

k∑
i=1

 k∑
j=1,j 6=i

∂fi
∂xj

duj ∧ dui


For higher degree forms, a similar equation holds: we express the form in a basis of wedges of dui and
differentiate the coefficient scalar functions. Each time we differentiate ∂

∂ui
we add a dui∧ to the start

of the wedge product.

In the previous chapter, we talked about how certain differential operators composed to zero: the curl
of a gradient is zero and the divergence of a curl is zero. The exterior derivative lives up to this legacy
perfectly.
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Proposition 4.3.9. If ω is any differential form, then d(dω) = 0. Succinctly, we write d2 = 0 for the
exterior derivative.

Proof. The is nothing radical or insightful about the proof. We just apply the expression for the exterior
derivative twice and do a lot of tedious algebra with the indicies. All the terms cancel out and we get
zero.

There is one last operator on forms.

Definition 4.3.10. Let ω be a k-form and v is a vector field on the manifold. The interior product of
ω and v is written ivω. It is a k-1-form and is defined as follows.

ivω(v1, . . . , vk−1) = ω(v, v1, . . . , vk−1)

As a differential k-form, ω acts on k vectors. The interior product simply insist that the first vector
acted on is always the vector v, leaving the remainin k − 1 vectors undetermined.

4.3.2 Differential Forms in R3

The definitions so far have all been very abstract, so lets try to specialize back to R3 to see what
happens. In this section, our manifold will simple be an open set U in R3. Its coordinate function is
simply the identity Id : U → U . This lets us use the familiary coordinates x, y, z as local coordinates
on U and define fields and forms interms of these local coordinates. (Here, the local and ambient
coordinate are the same.)

Vector Fields ∂x, ∂y, ∂z

1-Forms dx, dy, dz

2-Forms dy ∧ dz, dz ∧ dx, dx ∧ dy
3-Forms dx ∧ dy ∧ dz

It is impossible to have a differential form of degree 4 or higher, since a 4-form must have at least
one repeated dx, dy or dz term and forms with repeated basis terms are zero. The degree of forms
is bounded by the dimension of the object. For the 2-forms, the ordering of the basis is related to
orientation. We will stick with the order as presented above.

If ω0, ω1, ω2 and ω3 are 0, 1, 2, and 3 forms respectively, they are written in terms of the basis by
using scalar fields fi as follows.

ω0 = f

ω1 = f1dx+ f2dy + f3dz

ω2 = f1dy ∧ dz + f2dz ∧ dx+ f3dx ∧ dy
ω3 = fdx ∧ dy ∧ dz
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Now we can consider the exterior derivatives of these forms. This will start to show us the connection
to the vector calculus.

First, let’s differentiate ω0, which just a scalar field. Its derivative, however, will be a 1-form.

dω0 =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz = df = ∇f · (dx, dy, dz)

The exterior derivative of a 0-form (scalar field) recovers the gradient operator. The gradient is the
coefficients of the 1-form.

Now let’s take ω1 a 1-form and calculate its exterior derivative. This derivative will be a 2-form.

ω1 = f1dx+ f2dy + f3dz

dω1 =
∂f1
∂y

dy ∧ dx+
∂f1
∂z

dz ∧ dx+
∂f2
∂x

dx ∧ dy +
∂f2
∂z

dz ∧ dy +
∂f3
∂x

dx ∧ dz +
∂f3
∂y

dy ∧ dz

= −∂f1
∂y

dx ∧ dy +
∂f1
∂z

dz ∧ dx+
∂f2
∂x

dx ∧ dy − ∂f2
∂z

dy ∧ dz − ∂f3
∂x

dz ∧ dx+
∂f3
∂y

dy ∧ dz

=

(
∂f3
∂y
− ∂f2

∂z

)
dy ∧ dz +

(
∂f1
∂z
− ∂f3

∂x

)
dz ∧ dx+

(
∂f2
∂x
− ∂f1

∂y

)
dx ∧ dy

= (∇× (f1, f2, f3)) · (dy ∧ dz, dz ∧ dx, dx ∧ dy)

If we do the orientation correctly and choose the basis order as we did, we recover the curl operation.
Again, the curl gives the coefficients of this 2-form.

The exterior derivative of a 0-form involed the gradient. For a 1-form, it involved the curl. If we take a
0-form ω0 and take the exterior derivative twice, then the fact d(dω0) = 0 is equivalent to the identity
∇×∇f = 0.

Now let’s take ω2 a 2-form and calculate its exterior derivative.

ω2 = f1dy ∧ dz + f2dz ∧ dx+ f3dx ∧ dy

dω2 =
∂f1
∂x

dx ∧ dy ∧ dz +
∂f2
∂y

dy ∧ dz ∧ dx+
∂f3
∂z

dz ∧ dx ∧ dy

=

(
∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

)
dx ∧ dy ∧ dz

= (∇ · (f1, f2, f3)) dx ∧ dy ∧ dz

The exterior derivative of a 2-form recovers the divergence operator. Again, d2 = 0 on a 1-form recovers
the identity that ∇ · (∇× F ) = 0 from before.

All three operators: gradient, divergence and curl, are found in the exterior derivative in the right
degree. Our vector fields defined previously can now be interpreted as the component functions of
either 1-forms or 2-forms in R3.

The idea of potentials also generalize. On a simply connected open set, we can prove that dω1 = 0 =⇒
ω = df , i.e, we can find scalar potentials. Similarly, dω2 = 0 =⇒ ω2 = dω1, i.e., we can find vector
potentials. This is part of a very general theorem that any differential form on a simply connected
open set which satisfies dω = 0 must have another form as its potential, i.e., ω = dη. There is some
language for this situation.
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Definition 4.3.11. A differential form ω is called closed if dω = 0. It is called exact is there exists
another form η with ω = dη. On a simply connected open set, all closed forms are exact. On an
arbitrary set, there are often closed forms which are not exact.

These results about finding potentials are local on manifolds, where we can also work with these simply
connected open sets. Whether we can find a potential that works everywhere is a major question in
differential geometry. The problems that prevent us from finding such global potentials are called
obstruction and obstructions are the building blocks of structures called homology theories. A great
deal of effort is spent studying homology theories on manifolds.

One of the great advantages of working with differential forms is that they tell us how to generalize to
any dimensions. Curl is particular to R3, and it is not at all obvious what the generlization of curl is in
higher dimensions. Now that curl is the just the exterior derivative of differential 2-form, the extension
of curl is the same: the exterior derivative of a 2-form in any higher dimension. The exterior derivative
will give the formula in terms of components. The question of potentials is also now extendable, since
potentials are just the question of when a k-form ωk which satisifes dωk = 0 also has ωk = dωk−1 for
ωk−1 some k-1-form.

4.4 Pullbacks

When we worked with parametric curves and parametric surfaces, there were two kinds of coordinates:
coordinates in the parameter space (t for curves, u and v for surfaces) and coordinates in the ambient
space (x, y and z in R3). We needed to work with both sets of coordinates to property understand
these parametric objects. In line and flux integrals, we had to evaluate the vector fields, given in x, y
and z ambient coordinates, in terms of the parameters, so that we could integrate in those parameters.
We developed an interplay between the ambient coordinates and the parameters.

If U is an open set in a dimension k manifold in Rn, then we like have two sets of coordinates: local
coordaintes (parameters) on the manifold ui for 1 ≤ i ≤ k coming from the domain D(0, r) of a
coordinate function; and the ambient coordinates xi for 1 ≤ i ≤ n in Rn. In this section, we are going
to build a general understanding of the interaction between the two sets of coordinate.

Since the manifold under consideration has dimensions k, the higher degree differential form on U is a
k-form. In the local coordinates u1, . . . , uk, this form is simply f(u1, . . . , uk)du1 ∧ du2 ∧ . . . ∧ duk.

However, the form may also be expressed in terms of the ambient coordinates x1, . . . , xn. (Note that
n ≥ k: there may be more of these coordinates than the parameters!) The form can be expressed in
terms of wedges of k different dxi in the ambient coordinates. For example, if k = 2 and n = 3, then
the two form could be ω = (x2yz)dy ∧ dz or ω = (x+ y + z)dx ∧ dz.

In general, a k-form in the ambient coordinates can be a wedge of any subset consisting of exactly k
of the xi.

ωk = f(x1, . . . , xn)dxj1 ∧ dxj2∧, . . . ∧ dxjk
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For parametric curves and surfaces, we replaces the ambient coordinates with the parameters using
the definition of the curves and surface. When we went to integrate, we used a Jacobian term to relate
the integral of the ambient coordinates to the integral of the parameters. For the curve, that Jacobian
was |γ′(t)|, and for a surface, that Jacobian was |σu × σv|.

For a manifold, we will do the same. We will replace the ambient coordinates with the local coordinates
using the coordinate function. This is a change of coordinates: ambient going to local. Since the
local coordinates are the domain of the coordinate functions, this is sort-of going backwards with the
coordinate functions. For this reason, we call the operation a pullback of the differential form. Like the
curve and surface case, we will need a Jacobian for this pullback.

Definition 4.4.1. Let U be an open set on a manifold of dimension k inside Rn. Let u1, . . . , uk be its
local coordinates and φ : D → U is coordinate function. Let ωk be a differential k-form expressed in
the ambient coordinates (where the ji are any subset of exactly k of the ambient coordinates).

ωk = f(x1, . . . , xn)dxj1 ∧ dxj2∧, . . . ∧ dxjk

The pullback of ωk is the same form expressed in the local coordinates.

φ∗ωk = (f ◦ φ(u1, . . . uk))
∂(xj1 , xj2 , . . . , xjk)

∂(u1, u2, . . . , uk)
du1 ∧ . . . ∧ duk

The intermediate terms is the Jacobian of the pullback. It is defined as the determinant of a particular
matrix of partial derivatives of the coordinate function.

∂(xj1 , xj2 , . . . , xjk)

∂(u1, u2, . . . , uk)
=

∣∣∣∣∣∣∣∣∣∣


∂φj1
∂u1

∂φj1
∂u2

. . .
∂φj1
∂uj

∂φj2
∂u1

∂φj2
∂u2

. . .
∂φj2
∂uk

...
...

...
...

∂φjk
∂u1

∂φjk
∂u2

. . .
∂φjk
∂xk


∣∣∣∣∣∣∣∣∣∣

4.5 Integration of Differential Forms

Differential forms are built to serve as integrands. A major contention of differential geometry is that
an differential form is the only object that should be integrated and that any previously defined
integrations can be efficiently and clearly realized as the integrals of differential forms. The notation
reflects this: the fact that the bases for forms uses the symbols dxi is explicitly because these have
always been part of the notation for integration. The differential terms dx in an integral have always
been problematic: historically, they were infinitesimaly, and they have lingered as a vestige in modern
calculus. Differential forms finally give those pieces of notation proper, clear definitions in the moderm
treatment of integration.

This definition of integration assumes we already know single-variable integral and multiple integral of
scalar functions by way of iterated integrals (i.e., the first chapter of these notes). This definition does
not assume any integration of vector fields or integration over parametric surfaces.
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Definition 4.5.1. Let ωk is a k-form on U , an open set in a k−dimensional manifold. Let u1, . . . , uk
be local coordinates and let x1, . . . , xn be ambient coordinates. We can write ω = fdxj1 ∧ . . . ∧ dxjk
in ambient coordinates. Let φ : D → U is a coordinate function. The integral of ω over U is defined as
the integral of the pullback of ω over the domain of the coordinate function.∫

U

ω =

∫
U

fdxj1 ∧ . . . ∧ dxjk =

∫
D

φ∗ωdu1 . . . dul

So we pullback to a simply connected set in Rk and do the integral there. The cooeficient φ∗f(u1, . . . , uk)
is just a scalar function, so the integral is just a multiple-integral of a scalar function. Notice that the
wedge dxj1 ∧ . . . ∧ dxjk turns into du1 . . . duk in the integral over D! We finally treat the differential
terms du is integration properly: they are just differential forms written without the wedge product.

Let’s work this out in dimensions 1 and 2. In dimension 1, a manifold is locally a parametric curve and
the coordinate function is γ : [a, b]→ R3. We want to integrate a 1-form on γ, since the degree has to
match the dimension. Such a form in ambient coordinates is ω = f1dx + f2dy + f3dz. Let’s calculate
the integral.∫

γ

ω =

∫
[a,b]

γ∗ω

=

∫
[a,b]

(
f1 ◦ γ

dx

dt
dt+ f2 ◦ φ

dy

dt
dt+ f3 ◦ γ

dz

dt
dt

)
=

∫ b

a

f(γ(t)) · γ′(t)dt

If we treat the coefficient of the form as a vector field, we recover the integration forumla for line
integrals of a vector field over parametric curves.

In dimension 2, a manifold is locally a parametric surface and the coordinate function is σ : D → R3

in variables (u, v). We want to integrate a 2-form on σ, since the degree has to match the dimensions.
Such a form can be written in ambient coordinates.

ω = f1dy ∧ dz + f2dz ∧ dx+ f3dx ∧ dy

Its integral over a surface σ is the integral of the pullback over the parameter domain.∫
σ

ω =

∫
D

σ∗ω

=

∫
D

(
f1 ◦ σ

∂(y, z)

∂(u, v)
+ f2 ◦ σ

∂(z, x)

∂(u, v)
+ f3 ◦ σ

∂(x, y)

∂(u, v)

)
du ∧ dv

=

∫
D

(f ◦ σ) ·
(
dy

dv

dz

du
− dy

du

dz

dv
,
dz

dv

dx

du
− dz

du

dx

dv
,
dx

dv

dy

du
− dx

du

dy

dv

)
du ∧ dv

=

∫
D

f(σ(u, v)) · (σu × σv)dudv
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If we treated the cooeficients of the differential form as a vector field, we recover the integration formula
for the flux integral of a field over a parametric surfaces.

In this way, the integration definition for differential forms recovers all the vector field integrals we
defined (and any similar vector field integrals one might define in any higher dimensions). Differential
geometry argues, based on the fact that we can recover all these integration definition, that differential
forms are the proper elements for integration. This formalism simply isn’t possible if we stick with
vector fields: we need the strangeness of differentials forms (with their dual-space definition, action on
tangent vectors, exterior products and derivatives) in order to make this unification work. We need
pullbacks to change variables and have well-behaved Jacobians. In differential geometry, pullbacks
always exist for differential forms, but usually do not exist for vector fields. Differential forms are
simply the right things to integrate.

4.6 Stokes’ Theorem

Having done all this work, we can state the final result. This is called Stokes’ Theorem, but it generalizes
Stokes’ Green’s, Gauss’, and all the fundamental theorems we have so far. It is one theorem that clearly,
succintly and elegantly describe the relationships between integration, differentiation and boundary
operators, all in the language of differential forms.

Theorem 4.6.1. Let S be a oriented smooth k-dimensional manifold in Rn with boundary ∂S a
piecewise-smooth oriented k-1-dimensional manifold with compatible orientation. Let ω be a degree
k-1 differential form on ∂S with C2 coefficients which can be extended to a neighbourhood of S (so that
dω is a degree k form on S with C1 coefficents.) Stoke’s theorem is this succintly stated result.∫

S

dω =

∫
∂S

ω

That’s the whole theorem. If k = 1 then we have ω = f a scalar field, γ a curve and dω had coefficients
which were ∇f , so the theorem turns into the fundamental theorem for line integrals.∫

γ

∇f =

∫
γ

dω =

∫
∂γ

ω =

∫
∂γ

f = f(γ(b))− f(γ(a))

Integration over a zero dimensional set, such as the endpoint of a curve, is just evaluation. The sign
(positive or negative) is given by the orientation.

If k = 2, then we have ω = f1dx+f2dy+f3dz a 1-form, σ is a surface and ∂σ is a closed curve. Stokes’
theorem turns into the vector-field version of Stokes’ theorem. (We already argued that Green’s theorem
was just a special case of Stokes’ theorem).∫

σ

dw =

∫
∂σ

ω =⇒
∫
S

∇× (f1, f2, f3) =

∫
∂σ

(f1, f2, f3)
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Lastly, if k − 3, then we have ω = f1dy ∧ dz + f2dz ∧ dx + f3dx ∧ dy, S is a solid region and ∂S is a
closed surface. Stokes’ theorem turns into Gauss’ theorem.∫

S

dw =

∫
∂S

ω =⇒
∫
S

∇ · (f1, f2, f3) =

∫
∂S

(f1, f2, f3)

In this way, using the general theorem for differential forms, we recover Gauss-Green-Stokes and the
fundamental theorem of line integrals.
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