
The EventFinder Suite
Written: May, 2020, Updated September 2021 with re-tagging data

Overview
EventFinder is a suite a programs made at The King’s University (Edmonton, Alberta) to manage images
from camera traps from collection to classification. We find that solely manual management of camera
trap images to be tedious and error prone. EventFinder tries to balance the advantages of software with
human expertise. Currently EventFinder runs on Windows operating system and Java. Any version of
Java 1.7.0_07 or newer should run EventFinder. You may determine which version of Java you have by
typing “java -version” in a command line prompt.

EventFinder usage works in three stages, as shown in Figure 1. The first stage, the collection of
images from the camera cards, uses the CameraTransfer portion of the suite. The images are renamed
and moved into folders, each representing a site for processing. The second stage is computer
processing using the images from CameraTranfer as input, and producing a comma separated values file
as output (csv). There are two paths through this stage depending on the level of processing required.
EventSplitter segments images into events based on the time difference between images. EventFinder
processes sets of images to identify sequences containing only noise, and to identify the best image for
human classification. The third stage is the human classification phase. EventTagger uses the camera
trap images and the csv file produced in phase two to present an interface to the user with customizable
tags.

The EventFinder program was made first to reduce the number of images requiring human
classification. In our research we found it could remove approximately 90% of the images, while
retaining 90% of the events1. If more than 90% event retention is required, options in the current
software enable examination of all captured images. Our use of EventFinder highlighted inefficiencies
leading to creation of other software to handle additional camera trap image tasks. Hence the software
is labeled as the EventFinder suite, event though only one program in the suite is named EventFinder.

1Janzen, M., Ritter, A., Walker P.D. and Visscher D.R. EventFinder: a program for screening remotely
captured images. Environmental	Monitoring	and	Assessment 191,	406 (2019).

images
CameraTransfer

Stage 1

EventSplitter
Stage 2

EventFinder
Stage 2

EventTagger
Stage 3 csv csv

file
images

images

Figure 1: Three Stages of EventFinder Suite

The EventFinder Suite is free to use. Portions of its creation have been supported by grants
from Alberta Parks and The Alberta Conservation Association. If you use our program in your work we
ask that you list us in the Acknowledgments section of resulting publications, and we would appreciate
an email to let us know that the software is being used (Michael.Janzen@kingsu.ca). Knowing that the
software is useful to researchers and others is encouraging for further development, and important for
justifying the continued development time spent on the software. Donations to supporting the research
are always appreciated, but not required for full use of the software. Interested parties can contact
development@kingsu.ca to pursue financial donation.

Stage One: CameraTransfer
The CameraTransfer program, in the directory labelled
CameraTrapTransfer, is designed to move images into suitable
directories for processing by later components of the program.
The program organizes images for efficient future processing,
chiefly that all images from a site are in the same directory.
There are two ways of using CameraTransfer: “xml transfer” and
“directory transfer”. The xml transfer method is shown as
selected in Figure 2. We built CameraTransfer with xml transfer
in mind. When using the xml transfer method each camera
should be labelled with the site location. For example, see Figure
3 where the Reconyx camera has the camera name “K20”, for
King’s Camera site 20, in both the image and metadata. Using
the site name as the camera name works well with Reconyx

branded cameras, and our tests include
the models HC500 HYPERFIRE, HC600
HYPERFIRE, PC800 PROFESSIONAL, PC900
PROFESSIONAL, and HF2 PRO COVERT.
Other Reconyx models will also likely
work, and camera models without a
camera name in the images can work
with a user provided name when
transferring (for example, with Spypoint
camera models).

Organizational Tip:
The EventFinder suite can fill in repetitive information in the workflow if you use
expected directory names. Parent directories can be assigned as suits the user, but the
directory to transfer images into should end in a directory called “input”. For example,
“C:\Users\Janzen\ResearchStudy\Site01\input”. Subsequent programs will look for the
word “input” to pre-fill in later options.

Figure 2: CameraTransfer Options

Figure 3: Sample Reconyx Image named K20 after King’s site 20.

Stage One: Camera Transfer - XML transfer method
The xml method of transferring images uses an xml file to determine where to move camera

trap images to, based on their camera/site name. In our usage we place a camera memory card into our
computer, run the program, and the images are automatically placed into the appropriate directories
based on the xml file. The default xml file name is “setup.xml”. You may edit this file for your needs or
create a new xml file and specify that xml file each time you run the program. It is designed to be
human readable and editable, but please note that the program expects a rather strict structure. An
abbreviated xml file is shown in Figure 4. Please note that each tag has a matching closing tag, and
these opening and closing tag names must match. Text inside a <comment> is ignored by the
CameraTransfer program. Text inside each <sourceDirectory> tag should contain the path of one
directory to look for images, and multiple <sourceDirectory> tags should be used to have the program
look through multiple directories. In our example, we specify the memory card location that is mapped
to the D: drive of our computer. This example only lists two directories for brevity, while our working
file lists additional directories from 100RECNX through 109RECNX.

<cameraTransfer>
 <version>
 <major>1</major>
 <minor>1</minor>
 </version>
 <comment>Where to look for the SD camera card</comment>
 <sourceDirectory>D:\DCIM\100RECNX</sourceDirectory>
 <sourceDirectory>D:\DCIM\101RECNX</sourceDirectory>
 <comment>One or more directories to place images</comment>
 <validDestination>
 <directory>Z:\ResearchStudy\K01\input</directory>
 <cameraName>K01</cameraName>
 <deleteWhenMoved>no</deleteWhenMoved>
 </validDestination>
 <validDestination>
 <directory>Z:\ResearchStudy\K20\input</directory>
 <cameraName>K20</cameraName>
 <deleteWhenMoved>no</deleteWhenMoved>
 </validDestination>

 <comment>One or more camera models</comment>
 <validCameraModel>HC500 HYPERFIRE</validCameraModel>
 <validCameraModel>HC600 HYPERFIRE</validCameraModel>
 <validCameraModel>PC800 PROFESSIONAL</validCameraModel>
 <validCameraModel>PC900 PROFESSIONAL</validCameraModel>
</cameraTransfer>

Figure 4: Abbreviated Sample xml setup file

Valid destinations specify a mapping from a camera name to a directory to move the images. In our
example all images taken with camera K01 (site K01) are copied to “Z:\ResearchStudy\K01\input”.
Please note that the destination directory must exist before running CameraTransfer. Only two pairings
are shown for brevity, and your program should have a <validDestination> for each camera you use in
your study. The last section of the xml file lists camera models that are known to work. This functions
as a flag for CameraTransfer - if the model of camera is listed then CameraTransfer will proceed. You
may add additional camera models but test each one to ensure correct functionality. We have found
that adding additional Reconyx models seems to work without further modification. The option to
delete images when moved is not functional in this version of CameraTransfer and we delete the images
when the memory card is returned to the camera.

If you have a camera model that does not record the name in the image, or the name is not
correctly found by CameraTransfer, you may specify a default camera name to use when CameraTrap
does not find a name. In this case specify the “Use following when no camera name found” name text
field to manually enter the camera/site name (Figure 2). Please note that even when you provide the
name of the camera you must have a matching camera/site name in your xml file so that
CameraTransfer can look up the destination directory. When using the xml transfer method
CameraTransfer will exit if it doesn’t find a corresponding camera model name in the xml file. Lastly, the
option to prepend a site name to output image names will function with an xml transfer but may be left
blank if your camera name is your site name.

To run CameraTransfer you may select the CameraTrapTransfer.bat batch file or type “java
CameraTransfer” from the command line in the appropriate directory. The command line method may
provide additional details if something goes wrong when transferring images. We use the “setup.xml”
file to specify the camera / directory mappings, and no prepended site name. Consequently, we just
click “Start Transfer” to move images after placing a camera memory card in our computer.
CameraTransfer will copy the images from the input directory (the memory card in our case) to the
destination directory, renaming each image during the copy. The image names will be of the format
SiteName_CameraName_Date_Time_Number.JPG. For example, the image in Figure 3 will be named
“K20_2017_06_18_10_29_50_1.JPG” since we have no prepend site name, and this is the first image
with this date and time. For images taken less than one second apart the final number will increment,
to avoid overwriting images. Using this formatting of images gets around the problem where the
camera has multiple images with the same name. For example, we may encounter a IMG0001.JPG in
multiple directories, or during subsequent transfers.

How does CameraTransfer find the camera name in the metadata?
CameraTransfer does not know the Reconyx metadata structure so it first looks for
the camera model name, and then examines fields in the metadata until a match
for the camera name is found with one in the xml file. So, don’t name your site
name as just the year (example: 2019) since this field will be encountered first.

Stage One: Camera Transfer - Directory Transfer Method
 In some studies, there may be multiple cameras used at the same site, at different times. In this
case the user may have already transferred images into directories based on site name, but from
different cameras. In this case the directory copy method may be used to copy and rename images (the
second option in Figure 2). Here the user selects the “Directory Copy” method, and provides a site
name to prepend to copied image file names. The program will copy all images from the source
directory to the destination directory renaming the images using the same format as with the XML copy
method (see above). When using the directory transfer method, if no matching camera name is found
in the xml file, the camera name is omitted in the output image filename. In order for the camera name
to be included in the image file name the camera name must appear in the <validDestination> pair in
the xml file. In fact, the directory transfer method works the same as the xml transfer method, but the
destination directory from the <validDestination> is replaced with the one provided by the user. The
user may repeat this process, specifying different directories each time, until all the files are copied.

Stage Two: Computer Image Processing
At this point there are images in directories that ultimately need to be classified. If you used
CameraTransfer in Stage One, then these images should be in directories based on site locations. If you
have manually move images, then there may be another directory structure. Other directory structures
should work, so long as the times don’t overlap. For example, two cameras at different locations taking
pictures at the same time should be processed in separate runs of the program in stage two.

There are two options for dividing camera trap images into sets: EventSplitter and EventFinder.
Both options use the time difference between images – the names of the images are mostly irrelevant at
this stage (hence the reason you should not have two sites in the same directory). EventSplitter divides
sequences of images into image sets of events based on the time difference between sequential images,
where EventFinder does everything EventSplitter does, plus uses image processing to try to determine
sets containing only noise and identify the best image in sets containing events.

Stage Two: Computer Image Processing – EventSplitter

EventSplitter divides sequences of images
into image sets of events based on the time
difference between sequential images. The
default time difference to divide image sets
is 30 seconds, but this is a user settable
parameter, as shown in Figure 5. Images
are added using the “Add Image Files”
button and CTRL-A on a Windows machine
is handy to select all the files in a directory.
All the files in a directory should come from
the same site (although we have events
from cameras K04 and K17 in our example
to demonstrate different events later in
stage 3). Please name your csv file in a
meaningful way. We typically use site name
and date.

 After EventSplitter
completes, a prompt displays
asking to move the files.
Selecting “Yes” will bring up
the “Event Splitter Picture
Mover” program, shown in
Figure 6. Alternatively, the
Picture Mover program can be
run later by using the
“EventSplitterMover” batch
file in the
CameraTrapEventSplitter
directory.

The picture moving software requires a .csv file created by EventSplitter. This will be filled in
automatically if “Yes” was selected from the prompt. While EventSplitter should be able to handle
multiple csv files from the same site, it is best to run it with just one csv file at a time (the default way it
runs if run from the prompt). The three new directories have meanings as follows:

• Processed: Images processed by EventSplitter are put here
• Unprocessed: Any images not processed by EventSplitter (should be empty)
• Retained: Empty for EventSplitter as the best image in a set is not determined

Figure 5: EventSplitter

Figure 6: Event Splitter Mover program

If your input path ended with the directory
name “input” then the moving software will
automatically suggest directory names for the
processed, unprocessed, and retained
directories. After clicking “Start” Event Splitter
Picture Mover will prompt to create each of the
three new directories if they do not exist, as
shown in Figure 7.

At the end of running EventSplitter and Event Splitter Picture Mover, the images from the “input”
directory should be moved to “processed” and the “input”, “retained”, and “unprocessed” directories
should be empty. In the EventSplitter directory should be the csv file, in our case named
“May5_EventSplitter.csv”. This is our example name, please use a name that better refers to the images
processed such as site location and date.

The csv file can be moved to the directory
containing the images, so long as it’s above
the “processed” and “retained” directories,
as shown in Figure 8. We find this
workflow helps to keep track of which
pictures require processing as future
camera memory card transfers can now be
copied into the “input” directory.

Figure 7: Prompt to create a directory

Figure 8: Directory after running EventSplitter

Stage Two: Computer Image Processing – EventFinder
 EventFinder does the same task as EventSplitter, but
also removes image sets containing noise and moves
the best image in a sequence to the “retained”
directory. EventFinder is started with the batch file
“PictureProcessorBest”. This processes the images
and identifies the “best” image.
PictureProcessorBest allows the user to specify the
images to process, shown in Figure 9. Files are
added after clicking the “Add Image Files” button.
As with EventSplitter, all images selected should
come from the same directory corresponding to one
site (we have both K04 and K07 in our example to
demonstrate different events in the next stage).

EventFinder next requires a xml instructions file.
These instructions govern how each set of
images will be processed. The instructions used
in our work are in the instructions folder and
named “Instructions_FindBest2.xml”.

 The time difference specifies the time in
seconds between images, the default being 30
seconds.

“Max Pics/Set” can be used to force a division
between image sets even if the time difference
between each image is less than the specified
“Time Diff”.

Options increase the available memory on some
Java RunTime Environments and can be left as
they are.

Lastly, select a csv name descriptive of your
image set. We usually use site name and date.

 “PictureProcessorBest” must run on Windows, as
it creates a batch file to process each set of
images, named “ImageListToProcess.bat”. If the
“PictureProcessorBest.bat” file is used to start
EventFinder, then this batch file is called
automatically after the “Start” button is clicked.

EventFinder was the earliest of the programs
written and has been adapted for different
purposes. The “PictureProcesser” program is
for an earlier version that considers sequences
of image with a linear crossing (fences) and
identifies sequences where the animals cross
(mostly ungulates) while removing animals
that don’t (mostly cattle).

Janzen, M., Visser, K., Visscher, D.R.,
MacLeod, I., Vujnovic, D. and Vujnovic, K.
Semi-automated camera trap image
processing for the detection of ungulate
fence crossing events. Environmental	
Monitoring	and	Assessment 189,	527 (2017).

We have found that some computers have
antivirus programs or program execution controls
that may limit your ability to successfully run
EventFinder. In this case you can use a different
computer or use EventSplitter since EventSplitter
does not require batch files to run.

Figure 9: Event Finder Options

EventFinder may take a while to run. We typically leave it running overnight on multiple virtual servers,
each running a different instance of EventFinder. When complete, it creates a csv file in the same
format as EventSplitter (since either program can create a csv file for EventTagger). A line from the csv
file created is shown below:

C:\Users\Janzen\Desktop\EventFinderInstructions\input\K04_2017_06_25_0
9_31_08_1.JPG,C:\Users\Janzen\Desktop\EventFinderInstructions\input\K0
4_2017_06_25_09_31_13_1.JPG,6,Y,C:\Users\Janzen\Desktop\EventFinderIns
tructions\input\K04_2017_06_25_09_31_08_1.JPG,46,1,1.6666666,22309,201
7:06:25,09:31:08,09:31:13

Here each column is separated by a comma (as it’s a csv file) and can be opened in Excel or other
program if desired. The meaning of each column is described in order as follows:

• The starting image filename in the set of images for the event
• The ending image filename in the set of images for the event
• The number of images in the event
• If an event is present, “Y” for yes, “N” for no. EventSplitter will enter “U” for unknown
• The filename of the best image in the set of images
• The average x direction of the largest fragment in the set
• The average y direction of the largest fragment in the set
• The average number of animals in the set
• The time required for EventFinder to process the set
• The date the first image was taken (the date of the event)
• The time the first image was taken
• The time the last image was taken

The best image is determined by using background
subtraction. EventFinder uses all the images in the set to create a
background containing no animals, and then examines the
differences between each image and the background images.
These pixel differences in the image are grouped into fragments. If
there are no large fragments in the set, then the camera is
assumed to be triggered by noise, such as wind. Otherwise, the
best image is the one with the largest fragment that does not
touch the edge of the image.

The x and y directions of movement are determined using the largest fragment from each image. We
have found this is “sort of” and “kind of” useful as it can be wrong. For example, if an animal moves left
off the image and another animal moves left into the image then the largest fragment moves right.

The number of animals in the set is determined by averaging the number of large fragments in
each image. This again is “sort of” and “kind of” useful as we find it is about 70% correct in determining
zero, one, or more than one animal. For example, a baby overlapping a mother animal will likely be

Images with differences
covering most of the image are
removed as they are considered
more likely to be camera
movement, sudden light
changes, or an animal licking the
camera
"#$% (Yes, this has
happened, but a large blurry
tongue does not normally help
classify what licked the camera)

counted as one animal. Herds of animals may only be identified as more than one animal (although
EventFinder will attempt to assign a number for the count).

 After EventFinder runs, the csv file produced can be processed by the “PictureMoverBestDated”
batch file. This moves the images based the version of EventFinder that determines the “best” image
and knows which files are in each image set based on the date and time the image was taken.
PictureMoverBestDated runs in the same fashion as Event Splitter Picture Mover above (although it
does not start automatically). After running there should be four directories:

• input: This directory should be empty, and ready for new camera trap images
• processed: All images processed by EventFinder (either with or without an event)
• retained: The best image from each event should be copied here
• unprocessed: Images that were not processed end up here

Images in the unprocessed are any remaining images from the input directory that have not been
moved to processed. They may have been moved if an image set contains less than three images, such
as what can happen if one image in a three image set is corrupt, or other reasons.

As shown with EventSplitter in Figure 8 the csv file can be moved to the directory that contains the
input, processed, retained, and unprocessed directories.

Stage Three: EventTagger
At this point, whether EventSplitter or EventFinder has been used, there is a csv file to process and a set
of directories {input, processed, retained, unprocessed} of which the retained and processed are
important. Originally, we thought that a human tagger could simply tag only the images in the retained
directory, but we found they would keep a parallel workflow open in the file system to look at the
processed images when the retained image did not seem to provide enough information for tagging.
Hence, we created EventTagger, as shown in Figure 10, to bring this information together in one user
interface, and provide customized tagging options we found difficult to use in the software we were
previously using. EventTagger also assumes that events are tagged, rather than tagging individual
images.

Various components of EventTagger are shown in Figure 10. If EventFinder was used to create the csv
file, then initially the large image in the middle is of the window is the best image as determined by
EventFinder. If EventSplitter was used to create the csv file, then the large image is initially the first
image in the set. Clicking on the large image toggles the zooms in to full size or zoom back to show the
entire image. The three small images at the top provide a quick context of the event and each comes
from a different third of the images (first third, second third, last third). One of these images will be
initially displayed, and the other two are randomly selected.

The list of images on the left include the names of all the images in the set. Clicking, or
traversing them using arrow keys, changes the large image displayed. The image file names with
asterisks around them indicates they are one of the three small images in the top of the window.

Figure 10: EventTagger User Interface

The two buttons “Previous Set” and “Next Set” allow the user to move to difference events.
There is also a “Jump to Set” by number from the Navigation Menu near the top of the frame. For quick
use while tagging, there is an additional “Next image set” at the bottom of the tagging pane.

The tagging can be done by selecting options or entering text in the pane on the right-hand side.
If using a keyboard, pressing Tab (or Enter) will move to the next tag. The “Next image set” button can
be “clicked” from the keyboard by pressing the spacebar. If an option is selected, it can be deselected
by clicking on the selected option with the mouse pointer. The user can see additional tags by clicking
on the “Secondary Tags” pane.

Saving can be done either by clicking the “Save” button at the bottom of the Window or
selecting the “Save” option from the File menu. When saving, two files are written: a tagged csv file and
a project file. The csv file has the additional tags appended to the original csv file, and the project file
allows the tagger to resume tagging an image set later. Default names are suggested for each based on
the original csv file, but the user may select a different name if desired.

Accelerators enable quick navigation around the interface. They are listed in the menu and are
as follows:

• CTRL-S: Save
• CTRL-P: Go to previous event
• CTRL-N: Go to the next event
• CTRL-M or CTRL-1: Go to the main panel with the focus set to the first tag
• CTRL-2, CTRL-3: Go to the secondary or tertiary panel if available
• CTRL-I: Set the focus on the list of images on in the left of the window

For example, the user can quickly look through the image set with CTRL-I and then using the up and
down arrow keys to change the large image.

 Exiting can be done either by clicking the “x” in the upper right corner or by selecting “Exit” from
the file menu. The user is asked to confirm to exit and are reminded of unsaved tagging changes.

If not all the features appear, it may be that
you need to increase the size of the window.
The layout will be determined by Java’s
layout manager, but the example in Figure 11
is too small to be useful.

If an image set is displayed without a detected event, then the large window will
initially be blank until the tagger selects an image to display (also the window title will
change). This only happens when EventFinder creates the csv file.

Figure 11: EventTagger with a too small window

The tags presented to the user are customizable, with a default arrangement in TagList.xml. You may
modify this file or create a new xml file and select it when EventTagger starts. An abbreviated xml tag
list file used to create the tags in Figure 10 is presented below.

<TagList>
 <Tag>
 <CategoryName>Species</CategoryName>
 <Meaning>Species that was identified in the sequence</Meaning>
 <OptionName>Yeti</OptionName>
 <OptionName>Dragon</OptionName>
 <Priority>main</Priority>
 </Tag>
 <Tag>
 <CategoryName>Number</CategoryName>
 <Meaning>Number of individuals in the sequence</Meaning>
 <Number>
 <Minimum>0</Minimum>
 <Maximum>42</Maximum>
 <Increment>1</Increment>
 </Number>
 <IndividualCountTag>true</IndividualCountTag>
 <Priority>main</Priority>
 </Tag>
 <Tag>
 <CategoryName>Sex</CategoryName>
 <Meaning>Gender of Animals in Image</Meaning>
 <OptionName>Female</OptionName>
 <OptionName>Male</OptionName>
 </Tag>
 <Tag>
 <CategoryName>Comment</CategoryName>
 <Meaning>Additional Notes from the Tagger</Meaning>
 <TextField>true</TextField>
 <Priority>main</Priority>
 </Tag>
 <Tag>
 <CategoryName>
 Behaviour
 </CategoryName>
 <Meaning>Wildlife behaviour in sequence</Meaning>
 <OptionName>Skiing</OptionName>
 <OptionName>Cooking</OptionName>
 <OptionName>Queueing</OptionName>
 <OptionName>Quantity Surveying</OptionName>
 <Priority>
 secondary

 </Priority>
 </Tag>
 <Tag>
 <CategoryName>Direction</CategoryName>
 <Meaning>Average direction of movement</Meaning>
 <OptionName>Left</OptionName>
 <OptionName>Right</OptionName>
 <OptionName>Neither</OptionName>
 <DirectionTag>true</DirectionTag>
 <Priority>secondary</Priority>
 </Tag>
 <Tag>
 <CategoryName>Temperature</CategoryName>
 <Meaning>Current temperature</Meaning>
 <Number>
 <Minimum>-40</Minimum>
 <Maximum>42</Maximum>
 <Increment>1</Increment>
 </Number>
 <TemperatureTag>true</TemperatureTag>
 <Priority>secondary</Priority>
 </Tag>
 <Tag>
 <CategoryName>Tagger ID</CategoryName>
 <Meaning>Identification of person who tagged this image set</Meaning>
 <TextField>true</TextField>
 <TaggerIDTag>true</TaggerIDTag>
 <Priority>main</Priority>
 </Tag>
</TagList>

The indentation is optional, but helpful to make it more human readable. As before, each
element in the xml file has a matching opening and closing tag. The entire tag list begins with a
<TagList> and closed with the corresponding </TagList>. Similarly each tag begins with a <Tag> and ends
with a </Tag>. Each tag has a category name, which is the title of the tag in the interface and the title of
the column in a saved csv file when this option is selected. The meaning is the text displayed when the
tagger hovers over the tag title with the mouse.

As shown in the example Taglist file, there are three types of tags available.

• The default options tag. Here there is a list of options, each in a <OptionName> tag of
which the user can select one.

• The text tag. Here there is a <TextField> tag with a value of true indicating that the user
can write text in this tag. There are no options listed when <TextField> is true. Please
note that commas are not permitted when tagging a text field, since it will be saved into
a csv file presenting confusion in determining columns. If the tagger enters a comma in
this field they will be prompted to change it to a <comma> instead.

• The number tag. This is similar to a text field, but the user can only enter numbers.
Inside the <Number> tag are the <Minimum>, <Maximum>, and <Increment> options
for the lowest possible number, the highest possible number, and the amount the
number is permitted to change. For a number tag in the interface the tagger can either
type the number, use the up and down arrow keys on the keyboard, or click the up and
down arrows that appear. Please note that if the tagger types the number then they
must press enter to confirm the entry. Text that is not numeric, or outside the range
reverts to whatever was previously in the number tag. Currently EventTagger only
handles integer numbers. If fractions or decimals are required please specify a text field
instead, which allows arbitrary text.

The priority tag specifies which pane to place the tag. “main” puts the tag on the main panel.
“secondary” places the tag on the secondary panel. Specifying “tertiary” puts the tag on a third panel.
Please note that the tertiary pane only appears if there is at least one tag on it. The main and secondary
panels always appear. If no priority is specified, then main is assumed. It is our intention that tags that
must be filled in for every event should be placed on the main pane. Tags that are appropriate only
sometime should go on the secondary pane. This, however, is not enforced and users are permitted to
arrange the tags as they see fit. Please note that the order the tags appear in the tag list determine the
order of the columns in the tagged csv file.

 There are several special xml tags that enable additional behaviour in EventTagger, such as
automatically filling in a field. A unique special xml tag should appear only once in an xml tag list file.
For example, there should not be two temperature tags. These special tags are as follows:

• <IndividualCountTag>: When set to true this indicates that this tag is the number of individuals
in the event. EventTagger will use the average number of individuals from EventFinder to
initially fill in this field.

• <DirectionTag>: When set to true this tag is initially filled in with the direction of the animal
based on the average x-direction from EventFinder. This must be an options tag with the first
option means left, the second option means right, and the third option means neither.
Additional options may be specified after these, but these additional options will never be
selected automatically by EventTagger. The tagger may, however, manually select these options
while tagging.

• <TemperatureTag>: When set to true this tag is the temperature according to the first image in
the set. This tag can either be a text field or a number. As described below, EventFinder will
search the image for the temperature so this option will work when either EventSplitter or
EventFinder has been used to create the csv file.

• <TaggerIDTag>: when set to true this tag is the name or identity of the person doing the tagging.
This is set in the options when EventTagger starts and will copy the tagger ID whenever a tag is
changed in the set. Thus, one tagger can begin tagging and another can load the project later to
continue tagging. The TaggerIDTag tag will contain the identity of the tagger that last made a
change to the event.

As already indicated, an options
window appears when EventTagger
is first started, similar to the one
shown in Figure 12. These allow
the tagger to start a new project,
by clicking the “Select CSV File” or
continue from a saved project, by
clicking the Continue button.

When starting from a CSV file (new
project) the processed and
retained directories may be
automatically filled in. The paths of
the processed and retained
directories are determined in two
possible ways. In the first
method EventTagger looks at the
path for the first image in the csv file. EventTagger assumes that the file has been moved from “input”
to a “processed” directory and fills in that path if such a directory exists. The retained directory is
similarly assumed.

 If the processed or retained directory from the first image in the csv file no longer exists, then
EventTagger assumes the files have been moved from their original location. In this case EventFinder
assumes that the processed and retained directories are subdirectories of the directory that contains
the csv file. If such directories exists, then the paths will be automatically filled in. If neither of these
methods work, then the tagger is left to select the locations of the directories manually.

 When continuing from a saved project, the locations of the csv file, the processed directory, and
the retained directory are recorded in the saved project file. Similarly, the option to process all image
sets, including headers in the csv file, and the tagger identification are also written to the project file.
The entire tag list is written to the project file so a tagger cannot change the tags when continuing from
a saved project, as this could cause misalignment in the csv columns since different events would have
different tags / columns.

When the “Process all image sets event if no event detected” checkbox is clicked then all image
sets will be present for tagging, regardless of whether EventFinder detected an event or not. When
unchecked, only events detected by EventFinder are presented for tagging. If EventSplitter was used to
create the csv file then all image sets are presented to the tagger since EventSplitter does not detect
events. The tagger can select whether to include headers in the tagged csv file using the “Include
headers in csv save file”.

EventTagger can automatically record the temperature when the <TemperatureTag> is set to
true for one of the tags. To determine the temperature EventTagger examines the white pixels in the
first image of an image set. If the pixels at a location match a bit pattern in the “Temperature Symbols”
file, then the temperature is filled in for the corresponding tag. The file “TemperatureBitMasks.xml”
contains the location and bit masks for symbols for two Reconyx models of camera. You may create a
new bit mask for other cameras should you want.

Figure 12: EventTagger options window

Re-Tagging Previously Tagged data from different Image
Files (new for September 2021)

Event Tagger now supports opening a tagging session from a csv that contains images from
multiple image folders. Before, each tagging session was only for one set of images. With this added
feature, you can now load up events that were previously tagged in different sessions. Say you want to
view all previously tagged events of Moose that you put into one csv file. You can put that into
EventTagger using the “Select CSV File” option. EventTagger will detect you are trying to load events
from multiple files and will tell you which file to start with in a pop-up alert. Using the “Change” button
on the processed directory field, navigate to that directory.

EventTagger will assume that all your image folders are all in the same parent directory. For example:

C:/EventFinderSuite/Images/RR01_2018-07-18_2018-08-13/processed
and
C:/EventFinderSuite/Images/SB02_2018-08-08_2018-08-14/processed

would both be in the Images folder. If they are not, this feature will not work. From here you can start
tagging. Saving and continuing from a saved project work the same as before on these subset csv’s.

 If you keep a master CSV of all you tagged data, you can also choose the option to merge the
changes that you made to your subset data back into your master CSV. Check the “Merge subset CSV
with Master” box and using the “Change” button right below that to find your master CSV file. When
you are done tagging and want to merge, click File > Merge in the menu bar. By default, this will create a
new master file. If you don’t check the merge box in the opening options, the merge option will be
disabled in the menu bar.

Setting the bitmask for EventTagger to automatically
determine the temperature

The start of a temperature bit mask file is shown below. As with other files it is specified using
xml to increase its human readability.

<TemperatureImage>
 <CameraBrand>RECONYX</CameraBrand>
 <CameraName>HC500 and PC800</CameraName>
 <ErrorsAllowed>3</ErrorsAllowed>
 <Location>
 <Name>Sign HC500</Name>
 <X>1729</X>
 <Y>0</Y>
 <Width>30</Width>
 <Height>30</Height>
 </Location>

The <CameraBrand> and
<CameraName> are primarily for humans
to know to which models this file
corresponds. The <ErrorsAllowed>
indicate how many pixels can be wrong,
and the bit mask still considered to match.
Each <Location> indicates an area in the
image to search. For example, the
<Location> in the example indicates where
to look for the negative sign with the
HC500 model of camera.

For each location EventTagger will
match against a set of potential symbols.
An example is shown to the right. Notice
that the 1’s indicate where there should be
white pixels in a bit mask match while the
0’s indicate black pixels. If the white and
black pixels at the image location match
the bit mask pattern, then the
temperature will be written to the tag (in
this case a 4).

<Symbol>
 <Name>4</Name>
 <Pattern>
 000000000000000000000000000000
 000000000000000000000000000000
 000000000000000001111110000000
 000000000000000001111110000000
 000000000000000111111110000000
 000000000000000111111110000000
 000000000000011111111110000000
 000000000000011111111110000000
 000000000001111111111110000000
 000000000001111111111110000000
 000000000111111001111110000000
 000000000111111001111110000000
 000000011111100001111110000000
 000000011111100001111110000000
 000001111110000001111110000000
 000001111110000001111110000000
 000111111111111111111111111110
 000111111111111111111111111110
 011111111111111111111111111110
 011111111111111111111111111110
 011111111111111111111111111110
 011111111111111111111111111110
 000000000000000001111110000000
 000000000000000001111110000000
 000000000000000001111110000000
 000000000000000001111110000000
 000000000000000001111110000000
 000000000000000001111110000000
 000000000000000000000000000000
 000000000000000000000000000000
 </Pattern>
 </Symbol>

Conclusion
We have found the EventFinder Suite simplifies our Camera Trap Image processing and we hope

you find it useful too. CameraTransfer can manage transferring photos from camera trap memory cards
by site name or can be used to transfer from a directory of multiple cameras from the same site. Images
are automatically renamed to avoid duplicate names from a memory card’s directories, or from multiple
copies of the memory card. EventSplitter breaks the images into sets consisting of a single event, based
on the time difference between subsequent images. EventFinder goes further than EventSplitter and
also attempts to determine the best photo to initially present to a human tagger, as well as remove
image sequences that do not contain an event. EventFinder also attempts to identify the number of
animals, and the direction of movement in image sets, but currently requires additional human
verification. EventTagger present the image sets in a convenient layout. Ideally the image set can be
tagged all on one screen using the large image to determine important details, and the three small
images to set the context. The remaining images in a set can be quickly selected by clicking on the list or
using the arrow keys to traverse the images. Tags completed for every image set can be placed on the
main pane, while tags used less frequently can be placed on the second or third pane. Accelerator
keyboard keys enable quick traversal through the interface, and projects enable taggers to stop and
return to their work later. The use of an xml tag list file enables customization of the tags for a project,
and special flags in this file enables EventTagger to automatically fill in some information. Flagging a tag
as a tagger identification allows marking of who tagged an image set and updates based on image set
(event) rather than project based on who last tagged an event.

While there is required no cost for using the EventFinder suite we ask that you notify us if you
use this in your work. This will help us determine the value of continued input into the suite for its use
to ecologists, academic researchers, and others. We ask that publications resulting from research that
uses The EventFinder Suite add us as an acknowledgement in their publication or reference our paper
describing EventFinder2.

Sincerely,

Michael Janzen, Michael.Janzen@kingsu.ca

The EventFinder Suite, made at The King’s University, Edmonton, Alberta, Canada

Document last updated May 13, 2020 September 2021 (David Fountain)

2Janzen, M., Ritter, A., Walker P.D. and Visscher D.R. EventFinder: a program for screening remotely
captured images. Environmental	Monitoring	and	Assessment 191,	406 (2019).

